The TSI-3321 APS was used to measure concentration of atmospheric particulates in Ranjiaba region of Yubei District in Chongqing City during March 21- 29,2014,and the temporal variations in the hourly average mass and...The TSI-3321 APS was used to measure concentration of atmospheric particulates in Ranjiaba region of Yubei District in Chongqing City during March 21- 29,2014,and the temporal variations in the hourly average mass and number concentration and median particle diameter of PM10 and PM2.5 as well as their correlation with relative humidity were analyzed. The results showed that the three indicators of PM10 and PM2.5 except for the mass concentration correlated with relative humidity,of which the correlation between the mass median particle diameter and relative humidity was the best. The correlation coefficient R^2 between the mass median particle diameter of PM10( PM2.5) and relative humidity was up to 0. 943( 0. 832). Therefore,relative humidity and pressure are key impact factors of indicators of particles.展开更多
Emission characterization of particle number as well as particle mass from three diesel passenger cars equipped with diesel particulate filter(DPF), diesel oxidation catalyst(DOC)and exhaust gas recirculation(EGR...Emission characterization of particle number as well as particle mass from three diesel passenger cars equipped with diesel particulate filter(DPF), diesel oxidation catalyst(DOC)and exhaust gas recirculation(EGR) under the vehicle driving cycles and regulatory cycle.Total particle number emissions(PNEs) decreased gradually during speed-up of vehicle from 17.3 to 97.3 km/hr. As the average vehicle speed increases, the size-segregated peak of particle number concentration shifts to smaller size ranges of particles. The correlation analysis with various particulate components such as particle number concentration(PNC),ultrafine particle number concentration(UFPNC) and particulate matter(PM) mass was conducted to compare gaseous compounds(CO, CO2, HC and NOx). The UFPNC and PM were not only emitted highly in Seoul during severe traffic jam conditions, but also have good correlation with hydrocarbons and NOxinfluencing high potential on secondary aerosol generation. The effect of the dilution temperature on total PNC under the New European Driving Cycle(NEDC), was slightly higher than the dilution ratio. In addition, the nuclei mode(DP: ≤ 13 nm) was confirmed to be more sensitive to the dilution temperature rather than other particle size ranges. Comparison with particle composition between vehicle speed cycles and regulatory cycle showed that sulfate was slightly increased at regulatory cycle, while other components were relatively similar. During cold start test, semivolatile nucleation particles were increased due to effect of cold environment. Research on particle formation dependent on dilution conditions of diesel passenger cars under the NEDC is important to verify impact on vehicular traffic and secondary aerosol formation in Seoul.展开更多
文摘The TSI-3321 APS was used to measure concentration of atmospheric particulates in Ranjiaba region of Yubei District in Chongqing City during March 21- 29,2014,and the temporal variations in the hourly average mass and number concentration and median particle diameter of PM10 and PM2.5 as well as their correlation with relative humidity were analyzed. The results showed that the three indicators of PM10 and PM2.5 except for the mass concentration correlated with relative humidity,of which the correlation between the mass median particle diameter and relative humidity was the best. The correlation coefficient R^2 between the mass median particle diameter of PM10( PM2.5) and relative humidity was up to 0. 943( 0. 832). Therefore,relative humidity and pressure are key impact factors of indicators of particles.
基金supported by Transportation Pollution Research Center,National Institute of Environmental Research in Republic of Korea
文摘Emission characterization of particle number as well as particle mass from three diesel passenger cars equipped with diesel particulate filter(DPF), diesel oxidation catalyst(DOC)and exhaust gas recirculation(EGR) under the vehicle driving cycles and regulatory cycle.Total particle number emissions(PNEs) decreased gradually during speed-up of vehicle from 17.3 to 97.3 km/hr. As the average vehicle speed increases, the size-segregated peak of particle number concentration shifts to smaller size ranges of particles. The correlation analysis with various particulate components such as particle number concentration(PNC),ultrafine particle number concentration(UFPNC) and particulate matter(PM) mass was conducted to compare gaseous compounds(CO, CO2, HC and NOx). The UFPNC and PM were not only emitted highly in Seoul during severe traffic jam conditions, but also have good correlation with hydrocarbons and NOxinfluencing high potential on secondary aerosol generation. The effect of the dilution temperature on total PNC under the New European Driving Cycle(NEDC), was slightly higher than the dilution ratio. In addition, the nuclei mode(DP: ≤ 13 nm) was confirmed to be more sensitive to the dilution temperature rather than other particle size ranges. Comparison with particle composition between vehicle speed cycles and regulatory cycle showed that sulfate was slightly increased at regulatory cycle, while other components were relatively similar. During cold start test, semivolatile nucleation particles were increased due to effect of cold environment. Research on particle formation dependent on dilution conditions of diesel passenger cars under the NEDC is important to verify impact on vehicular traffic and secondary aerosol formation in Seoul.