The coupling of reaction and diffusion between neighboring active sites in the catalyst pore leads to the spatiotemporal fluctuation in component concentration,which is very importa nt to catalyst performance and henc...The coupling of reaction and diffusion between neighboring active sites in the catalyst pore leads to the spatiotemporal fluctuation in component concentration,which is very importa nt to catalyst performance and hence its optimal design.Molecular dynamics simulation with hard-sphere and pseudo-particle modeling has previously revealed the non-stochastic concentration fluctuation of the reactant/product near isolated active site due to such coupling,using a simple model reaction of A→B in 2D pores.The topic is further developed in this work by studying the concentration fluctuation due to such coupling between neighboring active sites in 3D pores.Two 3D pore models containing an isolated active site and two adjacent active sites were constructed,respectively.For the isolated site,the concentration fluctuation intensifies for larger pores,but the product yield decreases,and for a given pore size,the product yield reaches a peak at a certain reactant concentration.For two neighboring sites,their distance(d)is found to have little effect on the reaction,but significant to the diffusion.For the same reaction competing at both sites,larger d leads to more efficient diffusion and better overall performance.However,for sequential reactions at the two sites,higher overall performance presents at a smaller d.The results should be helpful to the catalyst design and reaction control in the relevant processes.展开更多
The achievement of universal quantum computing critically relies on scalability.However,ensuring the necessary uniformity for scalable silicon electron spin qubits poses a significant challenge due to the considerable...The achievement of universal quantum computing critically relies on scalability.However,ensuring the necessary uniformity for scalable silicon electron spin qubits poses a significant challenge due to the considerable fluctuations in valley splitting energy(E_(VS))across quantum dot arrays,which impede the initialization of qubit systems comprising multiple spins and give rise to spin–valley entanglement resulting in the loss of spin information.These E_(VS)fluctuations have been attributed to variations in the in-plane averaged alloy concentration along the confinement direction of Si/SiGe quantum wells.In this study,employing atomistic pseudopotential calculations,we unveil a significant spectrum of E_(VS)even in the absence of such concentration fluctuations.This spectrum represents the lower limit of the wide range of E_(VS)observed in numerous Si/SiGe quantum devices.By constructing simplified interface atomic step models,we analytically demonstrate that the lower bound of the E_(VS)spread originates from the in-plane random distribution of Si and Ge atoms within SiGe barriers——an inherent characteristic that has been previously overlooked.Additionally,we propose an interface engineering approach to mitigate the in-plane randomness-induced fluctuations in E_(VS)by inserting a few monolayers of pure Ge barrier at the Si/SiGe interface.Our findings provide valuable insights into the critical role of in-plane randomness in determining E_(VS)in Si/SiGe quantum devices and offer reliable methods to enhance the feasibility of scalable Si-based spin qubits.展开更多
In order to investigate the formation mechanisms of the layered growth phenomena in diffusion couples with spinodal decomposition,a phase field model combined with elastic strain field was employed.Microstructure evol...In order to investigate the formation mechanisms of the layered growth phenomena in diffusion couples with spinodal decomposition,a phase field model combined with elastic strain field was employed.Microstructure evolutions of diffusion couple with spinodal decomposition in binary alloys were numerically simulated by considering concentration fluctuation and elastic anisotropy.The simulation results indicate that the number of the periodical layers decreases with the increase of initial concentration fluctuation,even with large elastic anisotropy.The growth of layered microstructures can be attributed to the directional diffusion enhanced by initially discontinuous chemical potential at the interface.展开更多
The Reynolds-averaged general dynamic equation(RAGDE)for the nanoparticle size distribution function is derived,including the contribution to particle coagulation resulting from the fluctuating concentration.The equat...The Reynolds-averaged general dynamic equation(RAGDE)for the nanoparticle size distribution function is derived,including the contribution to particle coagulation resulting from the fluctuating concentration.The equation together with that of a turbulent gas flow is solved numerically in the turbulent flow of a ventilation chamber with a jet on the wall based on the proposed model relating the fluctuating coagulation to the gradient of mean concentration.Some results are compared with the experimental data.The results show that the proposed model relating the fluctuating coagulation to the gradient of mean concentration is reasonable,and it is necessary to consider the contribution to coagulation resulting from the fluctuating concentration in such a flow.The changes of the particle number concentration M_(0) and the geometric mean diameter dg are more obvious in the core area of the jet,but less obvious in other areas.With the increase in the initial particle number concentration m00,the values of M_(0) and the standard deviation of the particle sizeσdecrease,but the value of d_(g) increases.The decrease in the initial particle diameter leads to the reduction of M_(0) andσand the increase in d_(g).With the increase in the Reynolds number,particles have few chances of collision,and hence the coagulation rate is reduced,leading to the increase in M_(0) andσand the decrease in d_(g).展开更多
By preparing homogenous blend samples with different degrees of chain entanglement, we report an anomalous contribution of chain entanglement to phase separation temperature and rate of poly(methyl methacrylate)/pol...By preparing homogenous blend samples with different degrees of chain entanglement, we report an anomalous contribution of chain entanglement to phase separation temperature and rate of poly(methyl methacrylate)/poly(styrene-co- maleic anhydride) (PMMA/SMA) blends presenting a typical lower critical solution temperature (LCST) behavior. The melt- mixed PMMA/SMA blends with a higher chain entanglement density present a lower cloud point (To) and shorter delay time, but lower phase separation rate at the given temperature than solution-cast ones, suggesting that for the polymer blends with different condensed state structure, thermodynamically more facilitation to phase separation (lower Tc) is not necessarily equivalent to faster kinetics (decomposition rate). The experimental results indicate that the lower Tc of melt-mixed sample is ascribed to smaller concentration fluctuation wavelength (Am) induced by higher entanglement degree, while higher entanglement degree in melt-mixed sample leads to a confined segmental dynamics and consequently a slower kinetics (decomposition rate) dominated by macromolecular diffusion at a comparable quench depth. These results reveal that the chain packing in polymer blends can remarkably influence the liquid-liquid phase separation behavior, which is a significant difference from decomposition of small molecular mixtures.展开更多
基金supported by the National Natural Science Foundation of China(92034302,22178347)the Dalian National Laboratory for Clean Energy(DNL)Cooperation Fund,the Chinese Academy of Sciences(DNL201905)+1 种基金the“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21030700)the National Science and Technology Major Project(2017-I-0004-0005)。
文摘The coupling of reaction and diffusion between neighboring active sites in the catalyst pore leads to the spatiotemporal fluctuation in component concentration,which is very importa nt to catalyst performance and hence its optimal design.Molecular dynamics simulation with hard-sphere and pseudo-particle modeling has previously revealed the non-stochastic concentration fluctuation of the reactant/product near isolated active site due to such coupling,using a simple model reaction of A→B in 2D pores.The topic is further developed in this work by studying the concentration fluctuation due to such coupling between neighboring active sites in 3D pores.Two 3D pore models containing an isolated active site and two adjacent active sites were constructed,respectively.For the isolated site,the concentration fluctuation intensifies for larger pores,but the product yield decreases,and for a given pore size,the product yield reaches a peak at a certain reactant concentration.For two neighboring sites,their distance(d)is found to have little effect on the reaction,but significant to the diffusion.For the same reaction competing at both sites,larger d leads to more efficient diffusion and better overall performance.However,for sequential reactions at the two sites,higher overall performance presents at a smaller d.The results should be helpful to the catalyst design and reaction control in the relevant processes.
基金Project supported by the National Science Fund for Distinguished Young Scholars(Grant No.11925407)the Basic Science Center Program of the National Natural Science Foundation of China(Grant No.61888102)+1 种基金the Key Research Program of Frontier Sciences of CAS(Grant No.ZDBS-LYJSC019)CAS Project for Young Scientists in Basic Research(Grant No.YSBR-026)。
文摘The achievement of universal quantum computing critically relies on scalability.However,ensuring the necessary uniformity for scalable silicon electron spin qubits poses a significant challenge due to the considerable fluctuations in valley splitting energy(E_(VS))across quantum dot arrays,which impede the initialization of qubit systems comprising multiple spins and give rise to spin–valley entanglement resulting in the loss of spin information.These E_(VS)fluctuations have been attributed to variations in the in-plane averaged alloy concentration along the confinement direction of Si/SiGe quantum wells.In this study,employing atomistic pseudopotential calculations,we unveil a significant spectrum of E_(VS)even in the absence of such concentration fluctuations.This spectrum represents the lower limit of the wide range of E_(VS)observed in numerous Si/SiGe quantum devices.By constructing simplified interface atomic step models,we analytically demonstrate that the lower bound of the E_(VS)spread originates from the in-plane random distribution of Si and Ge atoms within SiGe barriers——an inherent characteristic that has been previously overlooked.Additionally,we propose an interface engineering approach to mitigate the in-plane randomness-induced fluctuations in E_(VS)by inserting a few monolayers of pure Ge barrier at the Si/SiGe interface.Our findings provide valuable insights into the critical role of in-plane randomness in determining E_(VS)in Si/SiGe quantum devices and offer reliable methods to enhance the feasibility of scalable Si-based spin qubits.
基金Project(2017YFB0702401) supported by the National Key R&D Program of ChinaProject(51301146) supported by the National Natural Science Foundation of ChinaProjects(20720170038,20720170048) supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to investigate the formation mechanisms of the layered growth phenomena in diffusion couples with spinodal decomposition,a phase field model combined with elastic strain field was employed.Microstructure evolutions of diffusion couple with spinodal decomposition in binary alloys were numerically simulated by considering concentration fluctuation and elastic anisotropy.The simulation results indicate that the number of the periodical layers decreases with the increase of initial concentration fluctuation,even with large elastic anisotropy.The growth of layered microstructures can be attributed to the directional diffusion enhanced by initially discontinuous chemical potential at the interface.
基金Project supported by the Major Program of the National Natural Science Foundation of China(No.91852102)。
文摘The Reynolds-averaged general dynamic equation(RAGDE)for the nanoparticle size distribution function is derived,including the contribution to particle coagulation resulting from the fluctuating concentration.The equation together with that of a turbulent gas flow is solved numerically in the turbulent flow of a ventilation chamber with a jet on the wall based on the proposed model relating the fluctuating coagulation to the gradient of mean concentration.Some results are compared with the experimental data.The results show that the proposed model relating the fluctuating coagulation to the gradient of mean concentration is reasonable,and it is necessary to consider the contribution to coagulation resulting from the fluctuating concentration in such a flow.The changes of the particle number concentration M_(0) and the geometric mean diameter dg are more obvious in the core area of the jet,but less obvious in other areas.With the increase in the initial particle number concentration m00,the values of M_(0) and the standard deviation of the particle sizeσdecrease,but the value of d_(g) increases.The decrease in the initial particle diameter leads to the reduction of M_(0) andσand the increase in d_(g).With the increase in the Reynolds number,particles have few chances of collision,and hence the coagulation rate is reduced,leading to the increase in M_(0) andσand the decrease in d_(g).
基金financially supported by the National Natural Science Foundation of China(No.51173165)the Fundamental Research Funds for the Central Universities(No.2013QNA4048)
文摘By preparing homogenous blend samples with different degrees of chain entanglement, we report an anomalous contribution of chain entanglement to phase separation temperature and rate of poly(methyl methacrylate)/poly(styrene-co- maleic anhydride) (PMMA/SMA) blends presenting a typical lower critical solution temperature (LCST) behavior. The melt- mixed PMMA/SMA blends with a higher chain entanglement density present a lower cloud point (To) and shorter delay time, but lower phase separation rate at the given temperature than solution-cast ones, suggesting that for the polymer blends with different condensed state structure, thermodynamically more facilitation to phase separation (lower Tc) is not necessarily equivalent to faster kinetics (decomposition rate). The experimental results indicate that the lower Tc of melt-mixed sample is ascribed to smaller concentration fluctuation wavelength (Am) induced by higher entanglement degree, while higher entanglement degree in melt-mixed sample leads to a confined segmental dynamics and consequently a slower kinetics (decomposition rate) dominated by macromolecular diffusion at a comparable quench depth. These results reveal that the chain packing in polymer blends can remarkably influence the liquid-liquid phase separation behavior, which is a significant difference from decomposition of small molecular mixtures.