This paper analyzes two extended finite element methods(XFEMs)for linear quadratic optimal control problems governed by Poisson equation in non-convex domains.We follow the variational discretization concept to discre...This paper analyzes two extended finite element methods(XFEMs)for linear quadratic optimal control problems governed by Poisson equation in non-convex domains.We follow the variational discretization concept to discretize the continuous problems,and apply an XFEM with a cut-off function and a classic XFEM with a fixed enrichment area to discretize the state and co-state equations.Optimal error estimates are derived for the state,co-state and control.Numerical results confirm our theoretical results.展开更多
基金supported by National Natural Science Foundation of China(Grant No.11771312)。
文摘This paper analyzes two extended finite element methods(XFEMs)for linear quadratic optimal control problems governed by Poisson equation in non-convex domains.We follow the variational discretization concept to discretize the continuous problems,and apply an XFEM with a cut-off function and a classic XFEM with a fixed enrichment area to discretize the state and co-state equations.Optimal error estimates are derived for the state,co-state and control.Numerical results confirm our theoretical results.