A model for evaluating structural damage of recycled aggregate concrete filled steel tube (RCFST) columns under seismic effects is proposed in this paper. The proposed model takes the lateral deformation and the eff...A model for evaluating structural damage of recycled aggregate concrete filled steel tube (RCFST) columns under seismic effects is proposed in this paper. The proposed model takes the lateral deformation and the effect of repeated cyclic loading into account. Available test results were collected and utilized to calibrate the parameters of the proposed model. A seismic test for six RCFST columns was also performed to validate the proposed damage assessment model. The main test parameters were the recycled coarse aggregate (RCA) replacement percentage and the bond-slip property. The test results indicated that the seismic performance of the RCFST member depends on the RCA contents and their damage index increases as the RCA replacement percentage increases. It is also indicated that the damage degree of RCFST changes with the variation of the RCA replacement percentage. Finally, comparisons between the RCA contents, lateral deformation ratio and damage degree were implemented. It is suggested that an improvement procedure should be implemented in order to compensate for the performance difference between the RCFST and normal concrete filled steel tubes (CFST).展开更多
In order to further improve the seismic performance of RC shear walls, a new composite shear wall with concrete filled steel tube (CFT) columns and concealed steel trusses is proposed. This new shear wall is a doubl...In order to further improve the seismic performance of RC shear walls, a new composite shear wall with concrete filled steel tube (CFT) columns and concealed steel trusses is proposed. This new shear wall is a double composite shear wall; the first composite being the use of three different force systems, CFT, steel truss and shear wall, and the second the use of two different materials, steel and concrete. Three 1/5 scaled experimental specimens: a traditional RC shear wall, a shear wall with CFT columns, and a shear wall with CFT columns and concealed steel trusses, were tested under cyclic loading and the seismic performance indices of the shear walls were comparatively analyzed. Based on the data from these experiments, a thorough elastic-plastic finite element analysis and parametric analysis of the new shear walls were carried out using ABAQUS software. The finite element results of deformation, stress distribution, and the evolution of cracks in each phase were compared with the experimental results and showed good agreement. A mechanical model was also established for calculating the load-carrying capacity of the new composite shear walls. The results show that this new type of shear wall has improved seismic performance over the other two types of shear wails tested.展开更多
This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. Th...This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. The method of 3D-VLE was developed to analyze the effects of concrete creep behavior on CFT structures. After the evaluation of the parameters in the proposed creep model, experimental measurements of two prestressed reinforced concrete beams were used to investigate the creep phenomenon of three CFT columns under long-term axial and eccentric load was investigated. The experimentally obtained time-dependent creep behaviour accorded well with the cu~'es obtained from the proposed method. Many factors (such as ratio of long-term load to strength, slenderness ratio, steel ratio, and eccentricity ratio) were considered to obtain the regularity of influence of concrete creep on CFT structures. The analytical results can be consulted in the engineering practice and design.展开更多
In this study, nine simplified short composite columns consisting of core CFST (concrete filled steel tube) of different diameters and outer reinforced concrete were constructed to study their compressive performance ...In this study, nine simplified short composite columns consisting of core CFST (concrete filled steel tube) of different diameters and outer reinforced concrete were constructed to study their compressive performance under axial or eccentric compression. The failure mode is characterized by the crush of the outer concrete. The bearing capacity increases at first and then decreases with further increase of the position coefficient. It can be concluded that position coefficient is an important structural parameter that has considerable influences on the ultimate bearing capacity of the composite columns. The outer concrete, steel tubes and longitudinal reinforcement are found to work in a cooperative manner under axial or eccentric compression when the position coefficient is about 0.5. An improved bearing capacity algorithm that takes the position coefficient into account has been proposed based on the experimental and simulation results and current technical specification in China. It has been proven to be precise and safe.展开更多
Using age adjusted effective modulus(AAEM)method,creep of concrete filled steel tube(CFST)member was formulated considering of creep coefficient and aging coefficient.Ten CFST specimens were tested including eight for...Using age adjusted effective modulus(AAEM)method,creep of concrete filled steel tube(CFST)member was formulated considering of creep coefficient and aging coefficient.Ten CFST specimens were tested including eight for creep and two for shrinkage.The experimental result was compared with the computed result using AAEM in which the creep coefficient was taken from calibration of ACI model based on experimental result on sealed concrete,and aging coefficient was supplied from relaxation test on sealed concrete specimen.Furthermore,the creep of CFST member was analyzed using author's own subroutine to input concrete properties through user programmable feature(UPF)in ANSYS software.Comparison was made on authors' own experimental database,some existing experimental results,and results from AAEM and numerical analysis.Finally,the conditions of applicability of AAEM method are put forward,and numerical approach to compute creep of CFST specimen is delineated.展开更多
The shrinkage characteristics tics of expansive concrete filled steel tube (CFST) are analyzed, Cold shrinkage, creep and autogenous shrinkage are considered as the main reasons of causing CFST contraction. In accorda...The shrinkage characteristics tics of expansive concrete filled steel tube (CFST) are analyzed, Cold shrinkage, creep and autogenous shrinkage are considered as the main reasons of causing CFST contraction. In accordance with the shrinkage characteristics of expansive CFST, a kind of energy-stored delayed expansive agent is exploited, which can not only compensate the shrinkage of the core concrete in every stages, but also make CFST expand according to the delayed expansion mechanism. As the result, the prestress loss weill be reduced and expansive energy will be utilized effectively.展开更多
In this article the high strength micro-expansive concrete that has been applied on big-diameter and long-span steel arch bridge is researched. The applications show that the concrete has some merits, such as good flu...In this article the high strength micro-expansive concrete that has been applied on big-diameter and long-span steel arch bridge is researched. The applications show that the concrete has some merits, such as good fluidity, low bleeding ratio and no segregation, low slump loss, high early strength and high later strength, micro-expansion etc.展开更多
A total of fifteen self-stressing and selfcompacting concrete(SSC)filled steel tube columns and three common self-compacting concrete filled steel tube(CFST)columns are tested under eccentric compression load to analy...A total of fifteen self-stressing and selfcompacting concrete(SSC)filled steel tube columns and three common self-compacting concrete filled steel tube(CFST)columns are tested under eccentric compression load to analyze the the effect of initial self-stress on the compression behavior of CFSTs.The results show that the elastic working range of the columns is lengthened because of initial self-stress and it slightly decreases with the increase of load eccentricity ratio and slenderness ratio.Because of the initial self-stress,the concrete core is always under compression in three directions,so the compactness is enhanced and the ultimate bearing capacity obviously increases;but the initial self-stress hardly affects the failure mode of the columns.展开更多
The behaviour of square concrete-filled steel tube columns under concentrical loading was studied. More than one hundred specimens were tested to investigate the effects of thickness of steel tube on the load carrying...The behaviour of square concrete-filled steel tube columns under concentrical loading was studied. More than one hundred specimens were tested to investigate the effects of thickness of steel tube on the load carrying capacity of the concrete-filled tubular columns (CFTs). The effect of the grade of concrete and content of expansive agent were also investigated. The effect of these parameters on the confinement of the concrete core was studied as well. From the experimental study it was found that for both CFTs with different strength grade concrete core, the ultimate load carrying capacity increases with the increase in percentage of expansive agent up to 20% but it again decreases at 25% of expansive agent content. It was also shown that the failure mode of CFTs depends on the strength grade of concrete core.展开更多
Shaking table tests of a 1:10 scale arch model performed to investigate the seismic behavior and resistance of concrete filled steel tubular (CFT) arch structures are described in this paper. The El-Centro record and ...Shaking table tests of a 1:10 scale arch model performed to investigate the seismic behavior and resistance of concrete filled steel tubular (CFT) arch structures are described in this paper. The El-Centro record and Shanghai artificial wave were adopted as the input excitation. The entire test process can be divided into three stages depending on the lateral brace configurations, i.e., fully (five) braced, two braces removed, and all braces removed. A total of 46 tests, starting from the elastic state to failure condition, have been conducted. The natural vibration frequencies, responses of acceleration, displacement and strain were measured. From the test results, it is demonstrated that the CFT arch structures are capable of resisting severe ground motions and that CFT arches offer a credible alternative to reinforced concrete arches, especially in regions of high seismic intensity.展开更多
In this paper stresses at joints forming by hollow steel tube and concrete filled steel tube (CFST) are calculated, analyzed and compared. It is founded that the stress concentration at joints of CFST is a quite dif...In this paper stresses at joints forming by hollow steel tube and concrete filled steel tube (CFST) are calculated, analyzed and compared. It is founded that the stress concentration at joints of CFST is a quite different from that of hollow steel tube. A conclusion can be made that analysis of fatigue at the joints of CFST truss arch bridge can not apply the results developed from analyzing at joints of hollow steel tube in marine structure.展开更多
A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipat...A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.展开更多
To better study the behavior of confined concrete, this paper presents the basic hypothesis of uhimate equilibrium of confined concrete and the unified yield criteria of confining material. Based on the static equilib...To better study the behavior of confined concrete, this paper presents the basic hypothesis of uhimate equilibrium of confined concrete and the unified yield criteria of confining material. Based on the static equilibrium condition and yield criteria of components, a unified bearing capacity model of confined concrete column is proposed, and a simplified calculating equation of the model is also given. The model captures the character of confined concrete column. Effects of the confinement effect ratio, the lateral confinement ratio, unconfined concrete strength and the properties of confining material on the bearing capacity of confined concrete column are carefully considered. The model may be applicable to the calculation of bearing capacity of steel-confined concrete, concrete filled steel tube and FRP-confined concrete. The predictions of the model agree well with test data.展开更多
The main objective of the research presented in this paper is to study the bending behaviour of Concrete Filled Steel Tube (CFST) columns made with Rubberized Concrete (RuC), and to assess the seismic performance ...The main objective of the research presented in this paper is to study the bending behaviour of Concrete Filled Steel Tube (CFST) columns made with Rubberized Concrete (RuC), and to assess the seismic performance of moment-resisting frames with these structural members. The paper describes an experimental campaign where a total of 36 specimens were tested, resorting to a novel testing setup, aimed at reducing both the preparation time and cost of the test specimens. Different geometrical and material parameters were considered, namely cross-section type, cross-section slenderness, aggregate replacement ratio, axial load level and lateral loading type. The members were tested under both monotonic and cyclic lateral loading, with different levels of applied axial loading. The test results show that the bending behaviour of CFST elements is highly dependent on the steel tube properties and that the type of infill does not have a significant influence on the flexural behaviour of the member. It is also found that Eurocode 4 is conservative in predicting the flexural capacity of the tested specimens. Additionally, it was found that the seismic design of composite moment- resisting frames with CFST columns, according to Eurocode 8, not only leads to lighter design solutions but also to enhanced seismic performance in comparison to steel frames.展开更多
基金the National Natural Science Foundation of China under Grant Nos.51408346 and 51438007the Shanghai Science and Technique Committee under Grant No.14231201300
文摘A model for evaluating structural damage of recycled aggregate concrete filled steel tube (RCFST) columns under seismic effects is proposed in this paper. The proposed model takes the lateral deformation and the effect of repeated cyclic loading into account. Available test results were collected and utilized to calibrate the parameters of the proposed model. A seismic test for six RCFST columns was also performed to validate the proposed damage assessment model. The main test parameters were the recycled coarse aggregate (RCA) replacement percentage and the bond-slip property. The test results indicated that the seismic performance of the RCFST member depends on the RCA contents and their damage index increases as the RCA replacement percentage increases. It is also indicated that the damage degree of RCFST changes with the variation of the RCA replacement percentage. Finally, comparisons between the RCA contents, lateral deformation ratio and damage degree were implemented. It is suggested that an improvement procedure should be implemented in order to compensate for the performance difference between the RCFST and normal concrete filled steel tubes (CFST).
基金Science and Technology Key Project of Beijing Under Grant No.D0905060370000National Natural Science Foundation of China Under Grant No.50878007+1 种基金Project High-level Personnel in Beijing Under Grant No.PHR20100502the Scientific and Technological Planning of Beijing Key Project Education Commission Under Grant No.KZ200910005008
文摘In order to further improve the seismic performance of RC shear walls, a new composite shear wall with concrete filled steel tube (CFT) columns and concealed steel trusses is proposed. This new shear wall is a double composite shear wall; the first composite being the use of three different force systems, CFT, steel truss and shear wall, and the second the use of two different materials, steel and concrete. Three 1/5 scaled experimental specimens: a traditional RC shear wall, a shear wall with CFT columns, and a shear wall with CFT columns and concealed steel trusses, were tested under cyclic loading and the seismic performance indices of the shear walls were comparatively analyzed. Based on the data from these experiments, a thorough elastic-plastic finite element analysis and parametric analysis of the new shear walls were carried out using ABAQUS software. The finite element results of deformation, stress distribution, and the evolution of cracks in each phase were compared with the experimental results and showed good agreement. A mechanical model was also established for calculating the load-carrying capacity of the new composite shear walls. The results show that this new type of shear wall has improved seismic performance over the other two types of shear wails tested.
文摘This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. The method of 3D-VLE was developed to analyze the effects of concrete creep behavior on CFT structures. After the evaluation of the parameters in the proposed creep model, experimental measurements of two prestressed reinforced concrete beams were used to investigate the creep phenomenon of three CFT columns under long-term axial and eccentric load was investigated. The experimentally obtained time-dependent creep behaviour accorded well with the cu~'es obtained from the proposed method. Many factors (such as ratio of long-term load to strength, slenderness ratio, steel ratio, and eccentricity ratio) were considered to obtain the regularity of influence of concrete creep on CFT structures. The analytical results can be consulted in the engineering practice and design.
基金Funded by the National Natural Science Foundation of China(Grant No. 51178119)
文摘In this study, nine simplified short composite columns consisting of core CFST (concrete filled steel tube) of different diameters and outer reinforced concrete were constructed to study their compressive performance under axial or eccentric compression. The failure mode is characterized by the crush of the outer concrete. The bearing capacity increases at first and then decreases with further increase of the position coefficient. It can be concluded that position coefficient is an important structural parameter that has considerable influences on the ultimate bearing capacity of the composite columns. The outer concrete, steel tubes and longitudinal reinforcement are found to work in a cooperative manner under axial or eccentric compression when the position coefficient is about 0.5. An improved bearing capacity algorithm that takes the position coefficient into account has been proposed based on the experimental and simulation results and current technical specification in China. It has been proven to be precise and safe.
文摘Using age adjusted effective modulus(AAEM)method,creep of concrete filled steel tube(CFST)member was formulated considering of creep coefficient and aging coefficient.Ten CFST specimens were tested including eight for creep and two for shrinkage.The experimental result was compared with the computed result using AAEM in which the creep coefficient was taken from calibration of ACI model based on experimental result on sealed concrete,and aging coefficient was supplied from relaxation test on sealed concrete specimen.Furthermore,the creep of CFST member was analyzed using author's own subroutine to input concrete properties through user programmable feature(UPF)in ANSYS software.Comparison was made on authors' own experimental database,some existing experimental results,and results from AAEM and numerical analysis.Finally,the conditions of applicability of AAEM method are put forward,and numerical approach to compute creep of CFST specimen is delineated.
基金Funded by The Transportation Ministry,P. R. China.
文摘The shrinkage characteristics tics of expansive concrete filled steel tube (CFST) are analyzed, Cold shrinkage, creep and autogenous shrinkage are considered as the main reasons of causing CFST contraction. In accordance with the shrinkage characteristics of expansive CFST, a kind of energy-stored delayed expansive agent is exploited, which can not only compensate the shrinkage of the core concrete in every stages, but also make CFST expand according to the delayed expansion mechanism. As the result, the prestress loss weill be reduced and expansive energy will be utilized effectively.
基金Funded by the State" the Nineth Five-Plan" of Communica-tion Ministry
文摘In this article the high strength micro-expansive concrete that has been applied on big-diameter and long-span steel arch bridge is researched. The applications show that the concrete has some merits, such as good fluidity, low bleeding ratio and no segregation, low slump loss, high early strength and high later strength, micro-expansion etc.
文摘A total of fifteen self-stressing and selfcompacting concrete(SSC)filled steel tube columns and three common self-compacting concrete filled steel tube(CFST)columns are tested under eccentric compression load to analyze the the effect of initial self-stress on the compression behavior of CFSTs.The results show that the elastic working range of the columns is lengthened because of initial self-stress and it slightly decreases with the increase of load eccentricity ratio and slenderness ratio.Because of the initial self-stress,the concrete core is always under compression in three directions,so the compactness is enhanced and the ultimate bearing capacity obviously increases;but the initial self-stress hardly affects the failure mode of the columns.
基金Funded by the National Natural Science Foundation of China (50978162)the Key Laboratory of Advanced Civil Engineering Materials (Tongji University), Ministry of Education(K201002)
文摘The behaviour of square concrete-filled steel tube columns under concentrical loading was studied. More than one hundred specimens were tested to investigate the effects of thickness of steel tube on the load carrying capacity of the concrete-filled tubular columns (CFTs). The effect of the grade of concrete and content of expansive agent were also investigated. The effect of these parameters on the confinement of the concrete core was studied as well. From the experimental study it was found that for both CFTs with different strength grade concrete core, the ultimate load carrying capacity increases with the increase in percentage of expansive agent up to 20% but it again decreases at 25% of expansive agent content. It was also shown that the failure mode of CFTs depends on the strength grade of concrete core.
基金This study was supported by the National Natural Science Foundation of China under Grant No.50078016Open Funding of State Key Laboratory for Disaster Reduction in Civil Engineering,China.
文摘Shaking table tests of a 1:10 scale arch model performed to investigate the seismic behavior and resistance of concrete filled steel tubular (CFT) arch structures are described in this paper. The El-Centro record and Shanghai artificial wave were adopted as the input excitation. The entire test process can be divided into three stages depending on the lateral brace configurations, i.e., fully (five) braced, two braces removed, and all braces removed. A total of 46 tests, starting from the elastic state to failure condition, have been conducted. The natural vibration frequencies, responses of acceleration, displacement and strain were measured. From the test results, it is demonstrated that the CFT arch structures are capable of resisting severe ground motions and that CFT arches offer a credible alternative to reinforced concrete arches, especially in regions of high seismic intensity.
文摘In this paper stresses at joints forming by hollow steel tube and concrete filled steel tube (CFST) are calculated, analyzed and compared. It is founded that the stress concentration at joints of CFST is a quite different from that of hollow steel tube. A conclusion can be made that analysis of fatigue at the joints of CFST truss arch bridge can not apply the results developed from analyzing at joints of hollow steel tube in marine structure.
基金National Natural Science Foundation of China under Grant No.51148009National Natural Science Foundation of China under Grant No.50978005Project High-level Personnel in Beijing under Grant No.PHR20100502
文摘A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50538060)the Excellent Young College Teacher Foundation of Anhui Prov-ince(Grant No.2009SQRZ081)
文摘To better study the behavior of confined concrete, this paper presents the basic hypothesis of uhimate equilibrium of confined concrete and the unified yield criteria of confining material. Based on the static equilibrium condition and yield criteria of components, a unified bearing capacity model of confined concrete column is proposed, and a simplified calculating equation of the model is also given. The model captures the character of confined concrete column. Effects of the confinement effect ratio, the lateral confinement ratio, unconfined concrete strength and the properties of confining material on the bearing capacity of confined concrete column are carefully considered. The model may be applicable to the calculation of bearing capacity of steel-confined concrete, concrete filled steel tube and FRP-confined concrete. The predictions of the model agree well with test data.
文摘The main objective of the research presented in this paper is to study the bending behaviour of Concrete Filled Steel Tube (CFST) columns made with Rubberized Concrete (RuC), and to assess the seismic performance of moment-resisting frames with these structural members. The paper describes an experimental campaign where a total of 36 specimens were tested, resorting to a novel testing setup, aimed at reducing both the preparation time and cost of the test specimens. Different geometrical and material parameters were considered, namely cross-section type, cross-section slenderness, aggregate replacement ratio, axial load level and lateral loading type. The members were tested under both monotonic and cyclic lateral loading, with different levels of applied axial loading. The test results show that the bending behaviour of CFST elements is highly dependent on the steel tube properties and that the type of infill does not have a significant influence on the flexural behaviour of the member. It is also found that Eurocode 4 is conservative in predicting the flexural capacity of the tested specimens. Additionally, it was found that the seismic design of composite moment- resisting frames with CFST columns, according to Eurocode 8, not only leads to lighter design solutions but also to enhanced seismic performance in comparison to steel frames.