期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Simulation of Random Crack Generation in Concrete Members with Uniform Stress Fields 被引量:2
1
作者 LIU Xing LU Wei +1 位作者 DENG Xi CHRISTIAN Meyer 《Journal of China University of Mining and Technology》 EI 2006年第4期518-522,共5页
The randomness of strength and deformation of concrete material is serious and should be considered both in theoretical analyses such as Finite Element Methods and engineering practice, specially for those structural ... The randomness of strength and deformation of concrete material is serious and should be considered both in theoretical analyses such as Finite Element Methods and engineering practice, specially for those structural members with a uniform stress field, where stresses or strains are approximately the same under loading. A mathematical ap- proach of producing a series of random variables of the ultimate tensile strain in concrete is proposed to describe the randomness ofconcrete deformation. With reinforced concrete finite elements a real model calculation method is found for the randomness of initial cracks determined by a minimum tension strain within the uniform stress fields of concrete members. The proposed methods in our paper have as aim to improve the existing method used by FEM and other rela- tive approaches, which normally pay less attention to randomness with consequences that may possibly differ from testing or practice. The method and sample computation as indicated is meaningful and comply with testing and engi- neering practice. 展开更多
关键词 concrete member uniform stress fields CRACK RANDOMNESS real model
下载PDF
Ultimate Strength of Annular Reinforced Concrete Members Under Combined Actions
2
作者 WANG Pu ZHOU Dai HUANG Zhen 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第4期430-438,共9页
Annular reinforced concrete(RC) members are commonly used in bridge structures and offshore platforms. These RC members often fail under the combined actions of axial force, bending moment, shear force and torsion loa... Annular reinforced concrete(RC) members are commonly used in bridge structures and offshore platforms. These RC members often fail under the combined actions of axial force, bending moment, shear force and torsion load in hazards of earthquake and wind. It is very important to study the failure mechanism of annular RC members under combined actions. This study proposes a model to analyze the ultimate strength of annular RC members under combined actions using limit failure theory. A new method is established to determine the geometric parameters of the warped failure surface, and the new calculation model for the ultimate strength is obtained using the equilibrium conditions based on the geometric parameters and the stress distribution on the failure surface. The proposed model calculations are compared with a series of experimental results of annular RC members, and they correspond well with the experimental results. The proposed model is feasible for engineering application. 展开更多
关键词 combined loads limit failure theory annular reinforced concrete (RC) members ultimate strength
原文传递
Application of ultrasonic CT method in nondestructive detection of interior defects in large scale concrete structural member of bridge
3
作者 Xiaopei ZHANG Jianhui QIU +2 位作者 Jianjun NIU Lizhi DU Xuege WANG 《Global Geology》 2008年第4期218-221,共4页
The ultrasonic computed tomography (USCT) method is derived from the basic principles of X-ray section scanning. This method records the arriving times of ultrasonic wave between the probes and the sources to ealcul... The ultrasonic computed tomography (USCT) method is derived from the basic principles of X-ray section scanning. This method records the arriving times of ultrasonic wave between the probes and the sources to ealculate the elastic wave velocity values in the section using the arrival times. Through analyzed the distribution Of elastic wave velocity in aim area, the information of the strength and the homogeneity of the investigated zone could be got indirectly. The authors introduced the operational principle of USCT and a practical case of using this method to detect the interior defects in large scale concrete structural member. Compared with other exploration methods, this method is more efficient and accurate. 展开更多
关键词 Ultrasonic CT concrete structural member nondestructive detection
下载PDF
Effects of Stirrups on Steel Corrosion and Expansion in Concrete
4
作者 高宗余 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第z1期180-182,共3页
Steel corrosion is the main occasion for durability degradation of concrete structures. For existing corrosion-expansion models of reinforcement, effects of stirrups were not considered, thus, they cannot entirely ref... Steel corrosion is the main occasion for durability degradation of concrete structures. For existing corrosion-expansion models of reinforcement, effects of stirrups were not considered, thus, they cannot entirely reflect the actual corrosion and expansion states. Based on uniform corrosion hypothesis and current models, a corrosion-expansion model for steel in concrete members is presented, which considered the effects of stirrups. Verification result of the model by test data indicates its full significance in structural inspection and life evaluation fields. 展开更多
关键词 STIRRUP concrete member corrosion-expansion model
下载PDF
Experimental investigation of damage behavior of RC frame members including non-seismically designed columns
5
作者 Chen Linzhi,Lu Xilin,Jiang Huanjun and Zheng Jianbo State Key Laboratory of Disaster Reduction in Civil Engineering,Tongji University,Shanghai 200092,China PhD Candidate Professor +1 位作者 Associate Professor Master of Engineering 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第2期301-311,共11页
Reinforced concrete (RC) frame structures are one of the mostly common used structural systems, and their seismic performance is largely determined by the performance of columns and beams. This paper describes horiz... Reinforced concrete (RC) frame structures are one of the mostly common used structural systems, and their seismic performance is largely determined by the performance of columns and beams. This paper describes horizontal cyclic loading tests often column and three beam specimens, some of which were designed according to the current seismic design code and others were designed according to the early non-seismic Chinese design code, aiming at reporting the behavior of the damaged or collapsed RC frame strctures observed during the Wenchuan earthquake. The effects of axial load ratio, shear span ratio, and transverse and longitudinal reinforcement ratio on hysteresis behavior, ductility and damage progress were incorporated in the experimental study. Test results indicate that the non-seismically designed columns show premature shear failure, and yield larger maximum residual crack widths and more concrete spalling than the seismically designed columns. In addition, longitudinal steel reinforcement rebars were severely buckled. The axial load ratio and shear span ratio proved to be the most important factors affecting the ductility, crack opening width and closing ability, while the longitudinal reinforcement ratio had only a minor effect on column ductility, but exhibited more influence on beam ductility. Finally, the transverse reinforcement ratio did not influence the maximum residual crack width and closing ability of the seismically designed columns. 展开更多
关键词 reinforced concrete frame member cyclic test hysteresis behavior damage behavior seismic performance
下载PDF
Finite Element Calculation of the Flexural Stiffness of Corroded RC Eccentric Compressive Members
6
作者 张华 卫军 +1 位作者 潘硚 黄滢 《Journal of Southwest Jiaotong University(English Edition)》 2010年第4期303-308,共6页
A finite element calculation model of corroded RC eccentric compressive members was build using finite element software ANSYS. The model considers the decline of mechanical properties and the effective section of a co... A finite element calculation model of corroded RC eccentric compressive members was build using finite element software ANSYS. The model considers the decline of mechanical properties and the effective section of a corroded steel bar,as well as the deterioration of bond character between corroded reinforcement and concrete. The reliability of the finite element model was evaluated by comparing the results of the finite element calculation with the data from experiments. Based on the finite element analysis results,the influence of corrosion degree,the diameter change of the longitudinal reinforcing bars and the spacing change of stirrups on the flexural stiffness were calculated and analyzed. 展开更多
关键词 Reinforced concrete eccentric compressive members Flexural stiffness Finite element method Corrosion degree Diameter of longitudinal reinforcing bars Stirrup spacing
下载PDF
An experimental study on the flexural behavior of heavily steel reinforced beams with high-strength concrete 被引量:1
7
作者 Yasser SHARIFI Ali Akbar MAGHSOUDI 《Frontiers of Structural and Civil Engineering》 CSCD 2014年第1期46-56,共11页
In recent years, an emerging technology termed high-strength concrete (HSC) has become popular in construction industry. Present study describes an experimental research on the behavior of high-strength concrete bea... In recent years, an emerging technology termed high-strength concrete (HSC) has become popular in construction industry. Present study describes an experimental research on the behavior of high-strength concrete beams in ultimate and service state. Six simply supported beams were tested, by applying comprising two symmetric concentrated loads. Tests are reported in this study on the flexural behavior of high-strength reinforced concrete (HSRC) beams made with coarse and fine aggregate together with Microsilica. Test parameter considered includes effect of being compressive reinforcement. Based on the obtained results, the behavior of such members is more deeply reviewed. Also a comparison between theoretical and experimental results is reported here. The beams were made from concrete having compressive strength of 66.81-77.72 N/mm2 and percentage reinforcement ratio (P/Pb) in the range of 0.56% - 1.20%. The ultimate moment for the tested beams was found to be in a good agreement with that of the predicted ultimate moment based on ACI 318-11, ACI 363 and C SA-04 provisions. The predicted deflection based classical formulation based on code provisions for serviceability requirements is found to underestimate the maximum deflection of HSC reinforced beams at service load. 展开更多
关键词 high-strength concrete (HSC) members flexural behavior reinforced concrete experimental results ultimatemoment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部