期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Experimental investigation of damage behavior of RC frame members including non-seismically designed columns
1
作者 Chen Linzhi,Lu Xilin,Jiang Huanjun and Zheng Jianbo State Key Laboratory of Disaster Reduction in Civil Engineering,Tongji University,Shanghai 200092,China PhD Candidate Professor +1 位作者 Associate Professor Master of Engineering 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第2期301-311,共11页
Reinforced concrete (RC) frame structures are one of the mostly common used structural systems, and their seismic performance is largely determined by the performance of columns and beams. This paper describes horiz... Reinforced concrete (RC) frame structures are one of the mostly common used structural systems, and their seismic performance is largely determined by the performance of columns and beams. This paper describes horizontal cyclic loading tests often column and three beam specimens, some of which were designed according to the current seismic design code and others were designed according to the early non-seismic Chinese design code, aiming at reporting the behavior of the damaged or collapsed RC frame strctures observed during the Wenchuan earthquake. The effects of axial load ratio, shear span ratio, and transverse and longitudinal reinforcement ratio on hysteresis behavior, ductility and damage progress were incorporated in the experimental study. Test results indicate that the non-seismically designed columns show premature shear failure, and yield larger maximum residual crack widths and more concrete spalling than the seismically designed columns. In addition, longitudinal steel reinforcement rebars were severely buckled. The axial load ratio and shear span ratio proved to be the most important factors affecting the ductility, crack opening width and closing ability, while the longitudinal reinforcement ratio had only a minor effect on column ductility, but exhibited more influence on beam ductility. Finally, the transverse reinforcement ratio did not influence the maximum residual crack width and closing ability of the seismically designed columns. 展开更多
关键词 reinforced concrete frame member cyclic test hysteresis behavior damage behavior seismic performance
下载PDF
Effects of Stirrups on Steel Corrosion and Expansion in Concrete
2
作者 高宗余 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第z1期180-182,共3页
Steel corrosion is the main occasion for durability degradation of concrete structures. For existing corrosion-expansion models of reinforcement, effects of stirrups were not considered, thus, they cannot entirely ref... Steel corrosion is the main occasion for durability degradation of concrete structures. For existing corrosion-expansion models of reinforcement, effects of stirrups were not considered, thus, they cannot entirely reflect the actual corrosion and expansion states. Based on uniform corrosion hypothesis and current models, a corrosion-expansion model for steel in concrete members is presented, which considered the effects of stirrups. Verification result of the model by test data indicates its full significance in structural inspection and life evaluation fields. 展开更多
关键词 STIRRUP concrete member corrosion-expansion model
下载PDF
Finite Element Calculation of the Flexural Stiffness of Corroded RC Eccentric Compressive Members
3
作者 张华 卫军 +1 位作者 潘硚 黄滢 《Journal of Southwest Jiaotong University(English Edition)》 2010年第4期303-308,共6页
A finite element calculation model of corroded RC eccentric compressive members was build using finite element software ANSYS. The model considers the decline of mechanical properties and the effective section of a co... A finite element calculation model of corroded RC eccentric compressive members was build using finite element software ANSYS. The model considers the decline of mechanical properties and the effective section of a corroded steel bar,as well as the deterioration of bond character between corroded reinforcement and concrete. The reliability of the finite element model was evaluated by comparing the results of the finite element calculation with the data from experiments. Based on the finite element analysis results,the influence of corrosion degree,the diameter change of the longitudinal reinforcing bars and the spacing change of stirrups on the flexural stiffness were calculated and analyzed. 展开更多
关键词 Reinforced concrete eccentric compressive members Flexural stiffness Finite element method Corrosion degree Diameter of longitudinal reinforcing bars Stirrup spacing
下载PDF
An experimental study on the flexural behavior of heavily steel reinforced beams with high-strength concrete 被引量:1
4
作者 Yasser SHARIFI Ali Akbar MAGHSOUDI 《Frontiers of Structural and Civil Engineering》 CSCD 2014年第1期46-56,共11页
In recent years, an emerging technology termed high-strength concrete (HSC) has become popular in construction industry. Present study describes an experimental research on the behavior of high-strength concrete bea... In recent years, an emerging technology termed high-strength concrete (HSC) has become popular in construction industry. Present study describes an experimental research on the behavior of high-strength concrete beams in ultimate and service state. Six simply supported beams were tested, by applying comprising two symmetric concentrated loads. Tests are reported in this study on the flexural behavior of high-strength reinforced concrete (HSRC) beams made with coarse and fine aggregate together with Microsilica. Test parameter considered includes effect of being compressive reinforcement. Based on the obtained results, the behavior of such members is more deeply reviewed. Also a comparison between theoretical and experimental results is reported here. The beams were made from concrete having compressive strength of 66.81-77.72 N/mm2 and percentage reinforcement ratio (P/Pb) in the range of 0.56% - 1.20%. The ultimate moment for the tested beams was found to be in a good agreement with that of the predicted ultimate moment based on ACI 318-11, ACI 363 and C SA-04 provisions. The predicted deflection based classical formulation based on code provisions for serviceability requirements is found to underestimate the maximum deflection of HSC reinforced beams at service load. 展开更多
关键词 high-strength concrete (HSC) members flexural behavior reinforced concrete experimental results ultimatemoment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部