期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
Properties of Sustainable High Strength Concrete with Waste Copper Slag
1
作者 JAGAN Sivamani KARUPASAMY Narayanan +3 位作者 DHARMARAJ R THIYANESWARAN Periyasamy KARTHIKEYAN Selvarajan NAVANEETHAN Kumaravalasu Subramaniam 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期815-822,共8页
The present work investigates copper slag as a substitute for river sand in high-strength concrete.The concrete mixtures were manufactured with 10%,30%,50%,70%,and 100%of copper slag to evaluate the mechanical and dur... The present work investigates copper slag as a substitute for river sand in high-strength concrete.The concrete mixtures were manufactured with 10%,30%,50%,70%,and 100%of copper slag to evaluate the mechanical and durability properties.The experimental results indicate that replacing copper slag above 50%affects the performance characteristics of the concrete due to its high angularity and lower water absorption characteristics.The strength of concrete with 50%copper slag is improved by 5.6%,whereas the strength of concrete with 100%copper slag is reduced by 2.75%at 28 days.However,increased curing to 90days improves the strength of the former by 7.16%and reduces the latter by only 0.23%.The water absorption,porosity,and rapid chloride penetration of the concrete mixtures with 100%copper slag are increased by 10.44%,13.20%,and 19.56%compared to control concrete.Micro-structural investigations through SEM infer higher replacement of copper results in higher void formation due to its reduced water absorption. 展开更多
关键词 copper slag high strength concrete strength water absorption POROSITY
下载PDF
Effect of Steel Fiber on Concrete’s Compressive Strength
2
作者 Mohammed Saed Yusuf Abdirisak Bashir Isak +4 位作者 Guled Ali Mohamud Abdullahi Hashi Warsame Yahye Ibrahim Osman Abdullahi Husein Ibrahim Liban Abdi Aziz Elmi 《Open Journal of Civil Engineering》 CAS 2023年第1期192-197,共6页
The general goal of this research is to investigate whether steel fiber has a significant “positive” or “negative” influence on concrete compressive strength, as well as the optimal steel fiber ratio that delivers... The general goal of this research is to investigate whether steel fiber has a significant “positive” or “negative” influence on concrete compressive strength, as well as the optimal steel fiber ratio that delivers best result. Manually, cement, fine aggregates, coarse aggregates, steel fibers, and water were mixed together properly. A slump test was carried on the mixed concrete. After determining the workability, the mixed concrete was poured into cubes dimension 150 mm × 150 mm × 150 mm and left for 24 hours. After 24 hours, the samples were removed from the mold and placed in a water tank to cure for 7 to 28 days. The cube was tested for compressive and flexural strength in a universal testing machine after the samples had cured for the required 7 - 28 days. This study focuses on how to obtain high strength concrete using with steel fiber in the Conventional mix ratio to enhance concrete strength. Concrete reinforcement using steel fibers alters the characteristics of the concrete, allowing it to withstand fracture and hence improve its mechanical qualities. This study reports on an experimental study that reveals the effect of steel fiber on concrete compressive strength and the optimal steel fiber ratio that produces the best results. Steel fiber reinforcing improved the compressive strength of concrete. The average compressive strength of normal M25 concrete with 0% steel fibers and curing ages of 7 and 28 days was determined to be 22.97 N/mm<sup>2</sup> and 25.78 N/mm<sup>2</sup>, respectively. The steel fibers are then added in various concentrations, such as 1%, 2%, and 3%, with aspect ratios of 70. The compressive strength of concrete with 1%, 2%, and 3% steel fiber with an aspect ratio of 70 was examined at 7 days and found to be 23.96, 24.80, and 26.14 N/mm<sup>2</sup> correspondingly. 展开更多
关键词 Steel Fiber Reinforced concrete Fiber Reinforcement Compression strength of concrete Improvement Compression strength
下载PDF
Sensitivity analysis of the deterioration of concrete strength in marine environment to multiple corrosive ions
3
作者 Jinwei YAO Jiankang CHEN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第2期175-190,共16页
The corrosion degradation behavior of concrete materials plays a crucial role in the change of its mechanical properties under multi-ion interaction in the marine environment.In this study,the variation in the macroph... The corrosion degradation behavior of concrete materials plays a crucial role in the change of its mechanical properties under multi-ion interaction in the marine environment.In this study,the variation in the macrophysical and mechanical properties of concrete with corrosion time is investigated,and the source of micro-corrosion products under different salt solutions in seawater are analyzed.Regardless of the continuous hydration effect of concrete,the damage effects of various corrosive ions(Cl^(−),SO_(4)^(2−),and Mg^(2+),etc.)on the tensile and compressive strength of concrete are discussed based on measurement in different salt solutions.The sensitivity analysis method for concrete strength is used to quantitatively analyze the sensitivity of concrete strength to the effects of each ion in a multi-salt solution without considering the influence of continued hydration.The quantitative results indicate that the addition of Cl−can weaken the corrosion effect of SO_(4)^(2−) by about 20%,while the addition of Mg^(2+)or Mg^(2+)and Cl^(−)can strengthen it by 10%–20%during a 600-d corrosion process. 展开更多
关键词 sensitivity analysis concrete strength corrosion deterioration multi-ion interaction marine environment
原文传递
Artificial Neural Network(ANN)Approach for Predicting Concrete Compressive Strength by SonReb
4
作者 Mario Bonagura Lucio Nobile 《Structural Durability & Health Monitoring》 EI 2021年第2期125-137,共13页
The compressive strength of concrete is one of most important mechanical parameters in the performance assessment of existing reinforced concrete structures.According to various international codes,core samples are dr... The compressive strength of concrete is one of most important mechanical parameters in the performance assessment of existing reinforced concrete structures.According to various international codes,core samples are drilled and tested to obtain the concrete compressive strengths.Non-destructive testing is an important alternative when destructive testing is not feasible without damaging the structure.The commonly used non-destructive testing(NDT)methods to estimate the in-situ values include the Rebound hammer test and the Ultrasonic Pulse Velocity test.The poor reliability of these tests due to different aspects could be partially contrasted by using both methods together,as proposed.in the SonReb method.There are three techniques that are commonly used to predict the compressive strength of concrete based on the SonReb measurements:computational modeling,artificial intelligence,and parametric multi-variable regression models.In a previous study the accuracy of the correlation formulas deduced from the last technique has been investigated in comparison with the effective compressive strengths based on destructive test results on core drilled in adjacent locations.The aim of this study is to verify the accuracy of Artificial Neural Approach comparing the estimated compressive strengths based on NDT measured parameters with the same effective compressive strengths.The comparisons show the best performance of ANN approach. 展开更多
关键词 Compressive concrete strength destructive tests non-destructive test ultrasonic pulse velocity rebound index SonReb method artificial neural network approach
下载PDF
Digital Vision Based Concrete Compressive Strength Evaluating Model Using Deep Convolutional Neural Network 被引量:7
5
作者 Hyun Kyu Shin Yong Han Ahn +1 位作者 Sang Hyo Lee Ha Young Kim 《Computers, Materials & Continua》 SCIE EI 2019年第9期911-928,共18页
Compressive strength of concrete is a significant factor to assess building structure health and safety.Therefore,various methods have been developed to evaluate the compressive strength of concrete structures.However... Compressive strength of concrete is a significant factor to assess building structure health and safety.Therefore,various methods have been developed to evaluate the compressive strength of concrete structures.However,previous methods have several challenges in costly,time-consuming,and unsafety.To address these drawbacks,this paper proposed a digital vision based concrete compressive strength evaluating model using deep convolutional neural network(DCNN).The proposed model presented an alternative approach to evaluating the concrete strength and contributed to improving efficiency and accuracy.The model was developed with 4,000 digital images and 61,996 images extracted from video recordings collected from concrete samples.The experimental results indicated a root mean square error(RMSE)value of 3.56(MPa),demonstrating a strong feasibility that the proposed model can be utilized to predict the concrete strength with digital images of their surfaces and advantages to overcome the previous limitations.This experiment contributed to provide the basis that could be extended to future research with image analysis technique and artificial neural network in the diagnosis of concrete building structures. 展开更多
关键词 concrete compressive strength deep learning deep convolutional neural network image-based evaluation building maintenance and management
下载PDF
STRENGTH CRITERION FOR PLAIN CONCRETE UNDER MULTIAXIAL STRESS BASED ON DAMAGE POISSON’S RATIO 被引量:6
6
作者 Ding Faxing Yu Zhiwu 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第4期307-315,共9页
A new unified strength criterion in the principal stress space has been proposed for use with normal strength concrete (NC) and high strength concrete (HSC) in compressioncompression-tension, compression-tension-t... A new unified strength criterion in the principal stress space has been proposed for use with normal strength concrete (NC) and high strength concrete (HSC) in compressioncompression-tension, compression-tension-tension, triaxial tension, and biaxial stress states. The study covers concrete with strengths ranging from 20 to 130 MPa. The conception of damage Poisson's ratio is defined and the expression for damage Poisson's ratio is determined basically. The failure mechanism of concrete is illustrated, which points out that damage Poisson's ratio is the key to determining the failure of concrete. Furthermore, for the concrete under biaxial stress conditions, the unified strength criterion is simplified and a simplified strength criterion in the form of curves is also proposed. The strength criterion is physically meaningful and easy to calculate, which can be applied to analytic solution and numerical solution of concrete structures. 展开更多
关键词 plain concrete high strength concrete multiaxial stress strength criterion MERIDIAN deviatoric plan
下载PDF
Internal Curing Using Water-releasing Material for High Strength Micro-expansive Concrete 被引量:5
7
作者 吕林女 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第3期510-513,共4页
Due to its low water content, it is difficult for expansive agent to have an effective expansive effect on high strength concrete to compensate its extensive shrinkage and form a certain expansion. To solve this probl... Due to its low water content, it is difficult for expansive agent to have an effective expansive effect on high strength concrete to compensate its extensive shrinkage and form a certain expansion. To solve this problem, water-releasing material with water storage and releasing characteristics was incorporated into high strength micro-expansive concrete to provide internal curing, and expansive effect of expansive agent was improved. Migration of water from initially saturated water-releasing material to the surrounding hydrating cement paste was investigated. Based on a given efficient diffusion distance of water stored in water-releasing material, the mass and real water-cement ratio of cured cement paste were estimated. At the same time, the effect of internal curing of water-releasing material on the volume deformation of high strength micro-expansive concrete was investigated. 展开更多
关键词 water-releasing material high strength concrete expansive internal curing
下载PDF
Influence of MB-value of Manufactured Sand on the Shrinkage and Cracking of High Strength Concrete 被引量:4
8
作者 王稷良 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第2期321-325,共5页
The relation between methylene blue (MB) value of MS and its limestone dust content and clay content was investigated. The effects of MB value ranging from 0.35 to 2.5 on the workability of fresh concrete and crack ... The relation between methylene blue (MB) value of MS and its limestone dust content and clay content was investigated. The effects of MB value ranging from 0.35 to 2.5 on the workability of fresh concrete and crack propagation characteristics at the age of 24 hours, and effects on the mechanical properties, dry shrinkage of the harden concrete were tested. The experimental results show that the MB value is not related with the limestone dust content of MS, but in direct proportion to clay content. With the increase of MB value, the concrete workability decreases, and the flexural strength and 7 d compressive strength reduce markedly, whearas the 28 d compressive strength is not affected. When the MB-value is less than or equal to 1.35, the change of the MB-value has a little influence on early plastic cracking and dry shrinkage property of concrete, but when the MB-value is more than 1.35, the tendency of plastic cracking and dry shrinkage is remarkable. 展开更多
关键词 manufactured sand methylene blue value high strength concrete anti-cracking SHRINKAGE
下载PDF
Seismic performance of steel reinforced ultra high-strength concrete composite frame joints 被引量:5
9
作者 Yan Changwang Jia Jinqing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第3期439-448,共10页
To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens... To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications. 展开更多
关键词 cyclical test axial load ratio volumetric stirrup ratio DUCTILITY strength degradation stiffness degradation steel reinforced ultra high strength concrete beam-column joint
下载PDF
Experimental study on the seismic behavior of high strength concrete fi lled double-tube columns 被引量:12
10
作者 Qian Jiaru Li Ningbo +1 位作者 Ji Xiaodong Zhao Zuozhou 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第1期47-57,共11页
To study the seismic behavior of high strength concrete fi lled double-tube(CFDT) columns,each consisting of an external square steel tube and an internal circular steel tube,quasi-static tests on eight CFDT column sp... To study the seismic behavior of high strength concrete fi lled double-tube(CFDT) columns,each consisting of an external square steel tube and an internal circular steel tube,quasi-static tests on eight CFDT column specimens were conducted.The test variables included the width-to-thickness ratio(β1) and the area ratio(β2) of the square steel tube,the wall thickness of the circular steel tube,and the axial force(or the axial force ratio) applied to the CFDT columns.The test results indicate that for CFDT columns with a square steel tube with β1 of 50.1 and 24.5,local buckling of the specimen was found at a drift ratio of 1/150 and 1/50,respectively.The lateral force-displacement hysteretic loops of all specimens were plump and stable.Reducing the width-to-thickness ratio of the square steel tube,increasing its area ratio,or increasing the wall thickness of the internal circular steel tube,led to an increased fl exural strength and deformation capacity of the specimens.Increasing the design value of the axial force ratio from 0.8 to 1.0 may increase the fl exural strength of the specimens,while it may also decrease the ultimate deformation capacity of the specimen with β1 of 50.1. 展开更多
关键词 high strength concrete fi lled double-tube(CFDT)column seismic behavior area ratio of the square steel tube width-to-thickness ratio of the square steel tube axial force ratio quasi-static test
下载PDF
Predicting Concrete Compressive Strength Using Deep Convolutional Neural Network Based on Image Characteristics 被引量:2
11
作者 Sanghyo Lee Yonghan Ahn Ha Young Kim 《Computers, Materials & Continua》 SCIE EI 2020年第10期1-17,共17页
In this study,we examined the efficacy of a deep convolutional neural network(DCNN)in recognizing concrete surface images and predicting the compressive strength of concrete.A digital single-lens reflex(DSLR)camera an... In this study,we examined the efficacy of a deep convolutional neural network(DCNN)in recognizing concrete surface images and predicting the compressive strength of concrete.A digital single-lens reflex(DSLR)camera and microscope were simultaneously used to obtain concrete surface images used as the input data for the DCNN.Thereafter,training,validation,and testing of the DCNNs were performed based on the DSLR camera and microscope image data.Results of the analysis indicated that the DCNN employing DSLR image data achieved a relatively higher accuracy.The accuracy of the DSLR-derived image data was attributed to the relatively wider range of the DSLR camera,which was beneficial for extracting a larger number of features.Moreover,the DSLR camera procured more realistic images than the microscope.Thus,when the compressive strength of concrete was evaluated using the DCNN employing a DSLR camera,time and cost were reduced,whereas the usefulness increased.Furthermore,an indirect comparison of the accuracy of the DCNN with that of existing non-destructive methods for evaluating the strength of concrete proved the reliability of DCNN-derived concrete strength predictions.In addition,it was determined that the DCNN used for concrete strength evaluations in this study can be further expanded to detect and evaluate various deteriorative factors that affect the durability of structures,such as salt damage,carbonation,sulfation,corrosion,and freezing-thawing. 展开更多
关键词 Deep convolutional neural network(DCNN) non-destructive testing(NDT) concrete compressive strength digital single-lens reflex(DSLR)camera MICROSCOPE
下载PDF
Autogenous Shrinkage of High Strength Lightweight Aggregate Concrete 被引量:2
12
作者 丁庆军 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第4期123-125,共3页
The characteristic of autogenous shrinkage(AS) and its effect on high strength lightweight aggregate concrete(HSLAC) were studied.The experimental results show that the main shrinkage of high strength concrete is ... The characteristic of autogenous shrinkage(AS) and its effect on high strength lightweight aggregate concrete(HSLAC) were studied.The experimental results show that the main shrinkage of high strength concrete is AS and the amount of cement can affect the AS of HSLAC remarkably,At the early stage the AS of HSLAC is lower than that of high strength normal concrete,but it has a large growth at the later stage.The AS of high strength normal concrete becomes stable at 90d age,but HSLAC still has a high AS growth .It is found that adjusting the volume rate of lightweight aggregate,mixing with a proper dosage of fly ash and raising the water saturation degree of lightweight aggregate can markedly reduce the AS rate of HSLAC. 展开更多
关键词 high strength lightweight aggregate concrete autogenous shrinkage lightweight aggregate volume rate
下载PDF
Mechanical Properties and Flowability of High Strength Concrete Incorporating Ground Granulated Blast-furnace Slag 被引量:1
13
作者 姚武 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2001年第3期42-45,共4页
The high strength concrete(HSC)was produced by partially replacingthe normal portland cement with special ground granulatedblast-furnace slag(GGBS)ranging up to 60/100. The effects of the GGBSon the flowabilityand mec... The high strength concrete(HSC)was produced by partially replacingthe normal portland cement with special ground granulatedblast-furnace slag(GGBS)ranging up to 60/100. The effects of the GGBSon the flowabilityand mechanical properties of HSC were studied. Thehydration process and microstructure char- acteristics wereinvestigated by X-ray diffraction(XRD)and scanning microscopy(SEM),respectively. The test results indicate that the GGBS has especiallysupplementary effect on water reducing and excellent property Ofbetter control of lump loss. 展开更多
关键词 high strength concrete mechanical property FLOWABILITY
下载PDF
Influence of Nano-Materials on Mechanical and Permeation Characteristics of High Strength Concrete 被引量:1
14
作者 K V S Gopala Krishna Sastry M Srinivasula Reddy A Ravitheja 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第3期416-422,共7页
Efforts have been made to evaluate the influences of the addition of nanoparticles on the strength,durability and mineralogical changes of high strength concrete(HSC).Therefore,mixes were prepared for conventional con... Efforts have been made to evaluate the influences of the addition of nanoparticles on the strength,durability and mineralogical changes of high strength concrete(HSC).Therefore,mixes were prepared for conventional concrete mix(CCM)of M80 grade.Further,various mixes were prepared by replacing cementitious materials initially with 1%Nano-CaCO_(3)(NC),2%NC,3%NC in the CCM,and then 1%NC and Nano-SiO_(2)(NS)NS,2%NC and NS,3%NC and NS(NC and NS were in equal proportion)in the CCM.The developed concretes were then evaluated for mechanical properties,permeation characteristics,and mineralogical studies.From the studies,it is found that the concrete at 2%NCS possesses superior mechanical and superior permeation characteristics of all the mixes.A clear variation in the mineralogical structure with the addition of nanoparticles has been observed. 展开更多
关键词 high strength concrete nano silicon dioxide nano calcium carbonate mechanical properties permeation properties
下载PDF
Structural Behavior of Continuous Prestressed Steel Fiber Reinforced High Strength Concrete Beam 被引量:2
15
作者 刘海波 向天宇 赵人达 《Journal of Southwest Jiaotong University(English Edition)》 2008年第1期37-45,共9页
The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestre... The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design. 展开更多
关键词 High strength concrete Steel fiber reinforced concrete Prestressed concrete Continuous beam
下载PDF
Behavior of High Strength Concrete Filled Square Steel Tube Stub Columns with Inner CFRP Tube Under Biaxial Eccentric Compression 被引量:1
16
作者 Zhijian Yang Guochang Li +1 位作者 Yan Lang Zengmei Qiu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第4期273-290,共18页
This paper studies the contribution of CFRP(carbon fiber-reinforced polymer)to the mechanical behavior of high strength concrete-filled square steel tube(HCFST)under biaxial eccentric compression.The new type of compo... This paper studies the contribution of CFRP(carbon fiber-reinforced polymer)to the mechanical behavior of high strength concrete-filled square steel tube(HCFST)under biaxial eccentric compression.The new type of composite member is composed of an inner CFRP tube and an outer steel tube with concrete filled in the two tubes.The finite element analysis was made by ABAQUS on the behavior of high strength concrete filled square steel tubular columns with inner CFRP circular tube subjected to bi-axial eccentric loading.The results obtained from the finite element analysis were verified with the experimental results.In addition,the load-deflection curves in the whole process were calculated and analyzed,which can be divided into three segments:Elastic phase,plastic phase,descending phase.Based on the load-deflection curves,the stresses analysis on the core concrete,CFRP tube and steel tube were conducted.The confinement effect of the CFRP tube improves the ductility of HCFST-CFRP stub column.CFRP ratio and eccentricity affect the ultimate bearing capacity of HCFST stub column.Finally,a calculation formula of ultimate bearing capacity was proposed in the paper. 展开更多
关键词 CFRP tube concrete-filled square steel tube high strength concrete bi-axial bending stub column
下载PDF
Prediction of the Residual Strength for Durability Failure of Concrete Structure in Acidic Environments 被引量:2
17
作者 李北星 CAI Laohu +1 位作者 WANG Kai ZHANG Yaming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第2期340-344,共5页
According to the results of accelerated tests of acidification corrosion depth and compressive strength of concretes subjected to sulfuric acid environments,the acidification depth laws of concretes were predicted bas... According to the results of accelerated tests of acidification corrosion depth and compressive strength of concretes subjected to sulfuric acid environments,the acidification depth laws of concretes were predicted based on the grey system theory.Thus,the remaining compressive strength was calculated when the acidification depth reached the protection layer thickness of concrete structures,which indicates that the limit state of durability failure can be defined based on strength degradation,and the calculation process was illustrated by an example.The calculated results show that the remaining compressive strength values in the durability failure limit state for the concrete structures exposed to p H=2 and 3 sulfuric acid water environments and wet-dry cyclic sulfuric acid environment with p H=2 are 74%,72%,and 80% of initialstrength,respectively.The method provides references for the durability evaluation of concrete structure design under the acidic environments. 展开更多
关键词 concrete structure acidification durability evaluation strength degradation concrete cover thickness
下载PDF
Strength Regularity and Failure Criterion of High-Strength High-Performance Concrete under Multiaxial Compression 被引量:1
18
作者 何振军 宋玉普 《Journal of Southwest Jiaotong University(English Edition)》 2008年第2期144-149,共6页
Multiaxial compression tests were performed on 100 mm×100 mm×100 mm high-strength high-performance concrete (HSI-IPC) cubes and normal strength concrete (NSC) cubes. The failure modes of specimens were p... Multiaxial compression tests were performed on 100 mm×100 mm×100 mm high-strength high-performance concrete (HSI-IPC) cubes and normal strength concrete (NSC) cubes. The failure modes of specimens were presented, the static compressive strengths in principal directions were measured, the influence of the stress ratios was analyzed. The experimental results show that the ultimate strengths for HSHPC and NSC under multiaxial compression are greater than the uniaxial compressive strengths at all stress ratios, and the multiaxial strength is dependent on the brittleness and stiffness of concrete, the stress state and the stress ratios. In addition, the Kupfer-Gersfle and Ottosen's failure criteria for plain HSHPC and NSC under multiaxial compressive loading were modified. 展开更多
关键词 High-strength high-performance concrete (HSHPC) Normal strength concrete (NSC) Stress ratio Multiaxial corn- pressive slxength Failure criterion
下载PDF
Effects of Curing Conditions on Strength Development of High Strength Concrete
19
作者 Cai, YB Kwan, KH 《China Ocean Engineering》 SCIE EI 1997年第1期99-108,共10页
This paper presents the results of a series of studies on the influence of curing conditions on the strength development of high strength concrete. The 1-, 3-, 7-, 14- and 28-day strengths of four different mixes of G... This paper presents the results of a series of studies on the influence of curing conditions on the strength development of high strength concrete. The 1-, 3-, 7-, 14- and 28-day strengths of four different mixes of Grade 75 similar to 80 concrete, with or without pulverized fuel ash and/or condensed silica fume, under five different curing regimes were investigated. It is revealed that the curing conditions have significant influence on both the short term and long term strength development of the concrete and that concrete mixes of the same grade but containing different mineral admixtures show distinct favour for a curing regime. These results will be helpful for evaluating suitable curing methods for high strength concrete with different mix proportions. 展开更多
关键词 curing condition high strength concrete strength development mineral admixture mix proportion
下载PDF
Experimental Study on Flexural Behavior of Post-Tensioning Bonded Partially Prestressed Ultra-High Strength Concrete Beams
20
作者 Jinqing Jia Gang Meng 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第2期94-102,共9页
This paper presents the results of four partially prestressed ultra-high strength concrete beams in flexure. The test results are used to evaluate the effects of prestressing tendon depth and area on flexure behavior ... This paper presents the results of four partially prestressed ultra-high strength concrete beams in flexure. The test results are used to evaluate the effects of prestressing tendon depth and area on flexure behavior of specimen beams. The test results indicate that: the cracking load,yielding load,peak load and stiffness postcracking of specimen beams are enhanced by reducing prestressing tendon depth or increasing prestressing tendon area, and the flexural ductility is improved by increasing prestressing tendon depth or reducing prestressing tendon area. The effect of complex reinforcement index considering the strength of the equivalence principle and the reinforcement position on loading levels under serviceability limit state,flexural strength and displacement ductility factor are studied. The influence coefficient of prestressing tendon kpis introduced in the complex reinforcement index. As the complex reinforcement index increases, the loading levels under serviceability limit state and flexural strength increases linearly,and the displacement ductility factor decreases linearly. The test results also verify the conventional beam flexural theory based on the plane cross-section assumption for predicting ultimate flexural strength of partially prestressed ultra-high strength concrete beams is valid. After the introduction of the coefficient kp,the calculation method of cracks in code for design of concrete structure in china are appropriated for the specimen beams. 展开更多
关键词 partially prestressed ultra-high strength concrete flexural behavior DUCTILITY serviceability limit state
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部