By using the uptodate temperatuer-stress testing machine, the thermal expansion coefficient of concrete at early ages was studied and indicative conclusions were achieved : temperature rising due to hydration heat is...By using the uptodate temperatuer-stress testing machine, the thermal expansion coefficient of concrete at early ages was studied and indicative conclusions were achieved : temperature rising due to hydration heat is not directly correlated with cracking, but the temperature and stress evolation process should be taken into consideration in the same time. Proper chemical admixtures and mineral cornpasitions can improve the mechanical properties of concrete such as thermal expansion coefficient, which is very indicative in practice.展开更多
In order to compare the compensation effect of expansive materials with different mineral sources on the temperature stress of concrete,we investigated the temperature stress of concrete when adding calcium sulfoalumi...In order to compare the compensation effect of expansive materials with different mineral sources on the temperature stress of concrete,we investigated the temperature stress of concrete when adding calcium sulfoaluminate type expansive materials(CSA)or CaO and calcium sulfoaluminate mixed type expansive materials(HCSA)at different temperatures by temperature-stress testing machine(TSTM)considering the influence of temperature history on the expansion.The experimental results show that the expansion characteristics of the two kinds of expansive materials with different mineral sources significantly vary.When adding expansive materials,the growth rate of compressive stress during the heating stage increases obviously,the maximum compressive stress is higher,while the decline rate of tensile stress in the late cooling stage becomes slow,and finally cracking temperature decreases.It is proved that concrete with HCSA has lower cracking temperatures and better temperature shrinkage compensation effect.Therefore,it is rational to choose HCSA when preparing concrete with high expansion energy to reduce thermal cracking.展开更多
In order to pay more attention to the quality of construction concrete and accurately judge whether concrete material meets the standard,a nondestructive testing algorithm of building concrete material defects based o...In order to pay more attention to the quality of construction concrete and accurately judge whether concrete material meets the standard,a nondestructive testing algorithm of building concrete material defects based on machine learning is proposed.Through the ray tracing algorithm of Snell’s theorem,the shortest path between two random punctuation marks of building concrete is calculated.The original coordinate system and grid size were set,the trend and length of the line in the grid were calculated,and the coordinates between the grid corner points and the transmitting probe were calculated so as to obtain the position of the intermediate refractive points of the two probes.Finally,the vector dot product of the local defects is obtained by the optimal hyperplane calculation of the binary classification in the support vector machine.Experimental results show that the proposed method has the advantages of high precision.展开更多
Temperature control curve is the key to achieving temperature control and crack prevention of high concrete dam during construction,and its rationality depends on the accurate measurement of temperature stress.With th...Temperature control curve is the key to achieving temperature control and crack prevention of high concrete dam during construction,and its rationality depends on the accurate measurement of temperature stress.With the simulation testing machine for the temperature stress,in the present study,we carried out the deformation process tests of concrete under three temperature curves:convex,straight and concave.Besides,we not only measured the early-age elastic modulus,creep parameters and stress process,but also proposed the preferred type.The results show that at early age,higher temperature always leads to greater elastic modulus and smaller creep.However,the traditional indoor experiments have underestimated the elastic modulus and creep development at early age,which makes the calculated value of temperature stress too small,thus increasing the cracking risk.In this study,the stress values of the three curves calculated based on the strain and early-age parameters are in good agreement with the temperature stress measured by the temperature stress testing machine,which verifies the method accuracy.When the temperature changes along the concave curve,the law of stress development is in consistent with that of strength.Under this condition,the stress fluctuation is small and the crack prevention safety of the concave type is higher,so the concave type is better.The test results provide a reliable basis and support for temperature control curve design and optimization of concrete dams.展开更多
基金Founded by Hubei Key Loboratory of Roadway Bridge and Struc-ture Engineering( Wuhan University of Technology)
文摘By using the uptodate temperatuer-stress testing machine, the thermal expansion coefficient of concrete at early ages was studied and indicative conclusions were achieved : temperature rising due to hydration heat is not directly correlated with cracking, but the temperature and stress evolation process should be taken into consideration in the same time. Proper chemical admixtures and mineral cornpasitions can improve the mechanical properties of concrete such as thermal expansion coefficient, which is very indicative in practice.
基金Funded by the National Key R&D Program of China(2017YFB0310102)。
文摘In order to compare the compensation effect of expansive materials with different mineral sources on the temperature stress of concrete,we investigated the temperature stress of concrete when adding calcium sulfoaluminate type expansive materials(CSA)or CaO and calcium sulfoaluminate mixed type expansive materials(HCSA)at different temperatures by temperature-stress testing machine(TSTM)considering the influence of temperature history on the expansion.The experimental results show that the expansion characteristics of the two kinds of expansive materials with different mineral sources significantly vary.When adding expansive materials,the growth rate of compressive stress during the heating stage increases obviously,the maximum compressive stress is higher,while the decline rate of tensile stress in the late cooling stage becomes slow,and finally cracking temperature decreases.It is proved that concrete with HCSA has lower cracking temperatures and better temperature shrinkage compensation effect.Therefore,it is rational to choose HCSA when preparing concrete with high expansion energy to reduce thermal cracking.
文摘In order to pay more attention to the quality of construction concrete and accurately judge whether concrete material meets the standard,a nondestructive testing algorithm of building concrete material defects based on machine learning is proposed.Through the ray tracing algorithm of Snell’s theorem,the shortest path between two random punctuation marks of building concrete is calculated.The original coordinate system and grid size were set,the trend and length of the line in the grid were calculated,and the coordinates between the grid corner points and the transmitting probe were calculated so as to obtain the position of the intermediate refractive points of the two probes.Finally,the vector dot product of the local defects is obtained by the optimal hyperplane calculation of the binary classification in the support vector machine.Experimental results show that the proposed method has the advantages of high precision.
基金National Key R&D Plan Project(No.2021YFC3090102)。
文摘Temperature control curve is the key to achieving temperature control and crack prevention of high concrete dam during construction,and its rationality depends on the accurate measurement of temperature stress.With the simulation testing machine for the temperature stress,in the present study,we carried out the deformation process tests of concrete under three temperature curves:convex,straight and concave.Besides,we not only measured the early-age elastic modulus,creep parameters and stress process,but also proposed the preferred type.The results show that at early age,higher temperature always leads to greater elastic modulus and smaller creep.However,the traditional indoor experiments have underestimated the elastic modulus and creep development at early age,which makes the calculated value of temperature stress too small,thus increasing the cracking risk.In this study,the stress values of the three curves calculated based on the strain and early-age parameters are in good agreement with the temperature stress measured by the temperature stress testing machine,which verifies the method accuracy.When the temperature changes along the concave curve,the law of stress development is in consistent with that of strength.Under this condition,the stress fluctuation is small and the crack prevention safety of the concave type is higher,so the concave type is better.The test results provide a reliable basis and support for temperature control curve design and optimization of concrete dams.