Zirconia ceramics have become increasingly widely used in recent years and are favored by relevant enterprises. From the traditional dental field to aerospace, parts manufacturing has been used, but there is limited r...Zirconia ceramics have become increasingly widely used in recent years and are favored by relevant enterprises. From the traditional dental field to aerospace, parts manufacturing has been used, but there is limited research on the deformation and damage process of zirconia ceramics. This article analyzes the acoustic emission characteristics of each stage of ceramic damage from the perspective of acoustic emission, and explores its deformation process characteristics from multiple perspectives such as time domain, frequency, and EWT modal analysis. It is concluded that zirconia ceramics exhibit higher brittleness and acoustic emission strength than alumina ceramics, and when approaching the fracture, it tends to generate lower frequency acoustic emission signals.展开更多
Recently developed multi-scale fiber(i.e.,CaCO3 whisker,polyvinyl alcohol(PVA)fiber,and steel fiber)reinforced rubberized concrete exhibits excellent mechanical properties and spalling resistance at high temperatures....Recently developed multi-scale fiber(i.e.,CaCO3 whisker,polyvinyl alcohol(PVA)fiber,and steel fiber)reinforced rubberized concrete exhibits excellent mechanical properties and spalling resistance at high temperatures.Measurement of macro properties such as strength and Young’s modulus cannot reveal and characterize damage mechanisms,particularly those relating to the multi-scale fiber strengthening effect.In this study,acoustic emission(AE)technology is applied to investigate the impact of multi-scale fiber on the damage evolution of rubberized concrete exposed to high temperatures,under the uniaxial compression and tension loading processes.The mechanical properties,AE event location,peak frequency,b-value,the ratio of rise time to amplitude(RA),average frequency(AF)values,and AE energy of specimens are investigated.The results show that the number of events observed using AE gradually increases as the loading progresses.The crumb rubber and fibers inhibit the generation and development of the cracks.It is concluded that both the peak frequency and b-value reflect the extension process of cracks.As the cracks develop from the micro scale to the macro scale,the peak frequency tends to be distributed in a lower frequency range,and the b-value decreases gradually.At the peak stress point,the AE energy increases rapidly and the b-value decreases.The specimens without multi-scale fibers exhibit brittle failure,while the specimens with fibers exhibit ductile failure.In addition,adding multi-scale fibers and crumb rubber increases the peak frequency in the medium and high frequency ranges,indicating a positive effect on inhibiting crack development.After being subjected to high temperatures,the maximum and minimum b-values decrease,reflecting an increase in the number of initial cracks due to thermal damage.Meanwhile,the RA and AF values are used to classify tensile and shear cracks.The specimens fracture with more shear cracks under compression,and there are more tensile cracks in specimens with multi-scale fibers under tension.展开更多
Based on statistical damage mechanics,the constitutive model of a rock underthree-dimensional stress was established by the law that the statistical strength of rockmicro-element obeys Weibull distribution.The acousti...Based on statistical damage mechanics,the constitutive model of a rock underthree-dimensional stress was established by the law that the statistical strength of rockmicro-element obeys Weibull distribution.The acoustic emission (AE) evolution model ofrock failure was put forward according to the view that rock damage and AE were consistent.Moreover,in the failure process of rock under three-dimensional stress,the change inrelationship between stress condition parameter and the characteristic parameters of AE,such as the event number and its change rate,were studied.Also,the rock AE characteristicunder uniaxial compression was analyzed in theory and verified with examples.Theresults indicate that the cumulative event number and change rate of AE in rock failure aredetermined by stress state parameter F.Along with the gradual increase of F,first the cumulativeevent number increases gradually,then rapidly,and then slowly after the stresspeak.The form of change rate of an event by increasing F is consistent with the distributionform of rock micro-element strength.The model explained the phenomenon that a relativelyquiet period of AE appears before rock rupture that is observed by many researchersin experiments.Verification examples indicate that the AE evolution model is consistentwith the test results,so the model is reasonable and correct.展开更多
To study the relationship between acoustic emission characteristic parameters of self-compacting concrete(SCC)and its destruction evolution,under uniaxial compression,acoustic emission(AE)tests are performed on C30 se...To study the relationship between acoustic emission characteristic parameters of self-compacting concrete(SCC)and its destruction evolution,under uniaxial compression,acoustic emission(AE)tests are performed on C30 selfcompacting concrete test blocks that are preserved for 7 days and 28 days,the corresponding relationship among energy,amplitude,ring count and different failure stages of the specimens are analyzed by AE experiment,and the spatial distribution of AE in each stage is described by introducing location map.The test shows that there are two rules for the failure of SCC specimens cured for 7 days and 28 days:(1)The first failure law is divided into four stages according to the percentage of the stress value reaching the limit stress:Initial stage:above 10%,the compaction time of test block cured for 28 days is relatively low;Elastic failure stage:30%–35%,the cumulative value of each parameter increases linearly,and the cumulative value of the amplitude is the largest;Crack stable propagation stage:35%–90%,there is a moment that causes local stress concentration in both test blocks;Active stage:above 90%,the cumulative value of the parameter rises sharply,then continues to load the test block instability and damage.(2)The second failure law is divided into five stages according to the percentage of the stress value reaching the limit stress:Initial stage:15%–20%,the cumulative value of each parameter increases with time;Elastic failure stage:20%–40%,the cumulative value of the parameter continues to grow,but the growth curve is approximately parallel;Crack stable propagation stage:40%–60%,all parameters increased sharply and the increase reached the peak of the whole process;A stable state:60–80%,the emission characteristic parameter will become zero,and the stable state of the 28 days curing test block is lagging;Active stage:above 90%,the number of signals increased sharply,but the energy and amplitude are low,and the later test block is completely fractured.(3)In the process of failure,the test block of SCC will form an inverted triangle or landslide failure surface,and the part above the failure surface is prone to failure,and there is a tendency to leave the test block.(4)Under uniaxial compression,the penetration of SCC cracks is mostly shear penetration.展开更多
The characteristics of acoustic emission (AE) signals given off in the course of the failure of a concrete structure is explored based on the laboratory experiments with concrete specimens. It is observed that the fai...The characteristics of acoustic emission (AE) signals given off in the course of the failure of a concrete structure is explored based on the laboratory experiments with concrete specimens. It is observed that the failure of a concrete structure experiences three stages divided by two inflexion points on the AE event curve, which are sequentially no damage, damage initiation and propagation, and major failure stages. In the first stage, existing micro cracks and defects are compacted by loading, but no damage propagated, hence few AE signals are detected, and it appears that there exists a nearly linear relationship between the relative stress and relative strain. In the second stage, the AE event frequency increases, implying that micro cracks begin to emerge inside the concrete structure, which is consistent with the damage mechanics. When the load is over 80 % of that breaks the structure, i.e. the maximum load, there is a vertical jump on the AE event count curve, which suggests that the failure propagation speeds up. After the second inflexion point, the AE event density increases faster than before, and there is another jump just before breaking, which indicates a quick propagation stage. These findings are valuable for evaluating the damage situations, and for studying and monitoring the dynamic process of the failure behaviors of a concrete structure.展开更多
AE (acoustic emission) signals from concrete slab during fatigue testing with a running-wheel load were evaluated. The signals were recorded by remote sensors connected to a computer network. The sensing equipment c...AE (acoustic emission) signals from concrete slab during fatigue testing with a running-wheel load were evaluated. The signals were recorded by remote sensors connected to a computer network. The sensing equipment consisted of 60 kHz resonant-type AE sensors mounted on a reinforcing steel bar as a waveguide, together with a 16-channel sensor highway AE system. Because the detected AE signals included periodic mechanical noise from the motion of the wheel, these noises were eliminated by means of signal processing. The AE waveguide measurement over a length of 3 m detected fractures as vertical and horizontal cracks in the RC (reinforced concrete) slab. Those cracks were analyzed by correlating AE parameters with macroscopic distortions and the numbers of fatigue cycles. In the AE events and AE energy, two types of AE phenomena, active region and inactive region, were observed during fatigue testing. The vertical cracks were characterized by an AE amplitude of 58 dB, a peak frequency of 30 kHz, and a ratio of the rise time to the maximum amplitude value (RA) of 100. The horizontal cracks were characterized by an AE amplitude of 85 dB, a peak frequency of 60 kHz, and an RA value of 10.展开更多
In order to characterize different damage modes, real-time detection of the tensile cracking process for AZ31 magnesium alloy was performed using acoustic emission (AE) technique. Results showed that elastic deforma...In order to characterize different damage modes, real-time detection of the tensile cracking process for AZ31 magnesium alloy was performed using acoustic emission (AE) technique. Results showed that elastic deformation, plastic deformation, microcracking, stable and unstable propagation occurred during crack damage. Four damage modes were determined using AE multiparameter analysis. Dislocation motion signals with amplitudes 〈70 dB and twinning signals with 70-100 dB were found. Microcrack signal energy was concentrated from 2400 aJ to 4100 aJ, mainly at a rise time of less than 800 gs. A stable crack propagation signal had high peak to counts in the 20 to 50 range, whereas its ring count was in the 20 to 2000 range. The average frequency of unstable propagation signals was approximately 100 kHz, with duration from 2000 gs to 10s gs. The damage mechanisms and AE resources from different crack propagation steps were discussed. Various damage modes could be characterized by different AE signal parameters when they appeared simultaneously during crack propagation.展开更多
For understanding acoustic emission (AE) activity and accumulation of micro-damage inside rock under pure tensile state, the AE signals has been monitored on the test of directly tension on two kinds of marble speci...For understanding acoustic emission (AE) activity and accumulation of micro-damage inside rock under pure tensile state, the AE signals has been monitored on the test of directly tension on two kinds of marble specimens. A tensile constitutive model was proposed with the damage factor calculated by AE energy rate. The tensile strength of marble was discrete obviously and was sensitive to the inside microdefects and grain composition. With increasing of loading, the tensile stress-strain curve obviously showed nonlinear with the tensile tangent modulus decreasing. In repeated loading cycle, the tensile elastic modulus was less than that in the previous loading cycle because of the generation of micro damage during the prior loading. It means the linear weakening occurring in the specimens. The AE activity was corresponding with occurrence of nonlinear deformation. In the initial loading stage which only elastic deformation happened on the specimens, there were few AE events occurred; while when the nonlinear deformation happened with increasing of loading, lots of AE events were generated. The quantity and energy of AE events were proportionally related to the variation of tensile tangent modulus. The Kaiser effect of AE activity could be clearly observed in tensile cycle loading. Based on the theory of damage mechanics, the damage factor was defined by AE energy rate and the tensile damage constitutive model was proposed which only needed two property constants. The theoretical stress-strain curve was well fitted with the curve plotted with tested datum and the two property constants were easily gotten by the laboratory testing.展开更多
Utilizing the acoustic emission(AE) technique, an experimental investigation into the damage evolution for steel strand under axial tension was described. The damage evolution model for steel stand relating the damage...Utilizing the acoustic emission(AE) technique, an experimental investigation into the damage evolution for steel strand under axial tension was described. The damage evolution model for steel stand relating the damage evolution to acoustic emission parameters was proposed by incorporating the AE rate process theory. The AE monitoring results indicate that damages occur in both elastic and plastic phases of steel strand. In elastic phase, AE signals are mainly sent out from the micro damage due to the surface friction among the wires of steel strand, while in plastic phase, AE signals emitted from the plastic deformation of wires. In addition, the AE cumulative parameters curves closely resemble the loading curve. The AE cumulative parameters curves can well describe the damage evolution process including the damage occurrence and damage development for steel strands. It is concluded that the AE technique is an effective and useful nondestructive technique for evaluating the damage characteristics of steel strand.展开更多
Advanced multi-channels acoustic emission (A.E) system is used to study the fracture process of alumina material subjected by three-point-bending loading. Using AE counts and AE hits, the location of damage and dama...Advanced multi-channels acoustic emission (A.E) system is used to study the fracture process of alumina material subjected by three-point-bending loading. Using AE counts and AE hits, the location of damage and damage characteristics are discussed. AE energy, AE counts, AE amplitude changing with loading time are analyzed for the notched alumina specimen. It is indicated that AE characteristic parameters reflect the damage process and fracture of material.展开更多
With the risk of disappearing for the rock paintings considering long-term exposure in Helan Mountain,the freeze-thaw(F-T)cycling experiments were carried out with 12-hour F-T cycling(0,10,20,30,and 40 F-T cycles)unde...With the risk of disappearing for the rock paintings considering long-term exposure in Helan Mountain,the freeze-thaw(F-T)cycling experiments were carried out with 12-hour F-T cycling(0,10,20,30,and 40 F-T cycles)under five kinds of confining pressures(5,10,20,30,and 40 MPa).The acoustic emission(AE)detect technology was used to reveal the rock fracturing characteristics during the triaxial compression test whole process.The stress-strain relation changes along with different confining pressures and F-T cycles.Peak stress and residual stress changes along with different confining pressures and damages,and the variation of axial stress-AE ringing counts-time changes along with different confining pressures and F-T cycles.The damage variable with AE parameter under F-T and force coupling was defined for the first time,and the damages model was established.The experimental results show that the F-T cycles lead to the decrease of rock strength and the gradual transformation of compression failure mode from brittleness to plasticity.The confining pressure provides a certain ability to resist deformation and inhibit crack growth for rock samples after F-T cycles.The temporal and spatial evolution law of AE counts well corresponds to the loading and failure process of the rock samples.The AE 3D positioning technology can accurately capture the development position and direction of internal cracks and pores of rock,and the failure form is conical shear failure.The established damage model has a better fittingness between the theoretical calculation results and the test results,and is reasonable to be used in the future for protection of Helan Mountain rock painting.展开更多
Purpose-This study aims to ensure the operation safety of high speed trains,it is necessary to carry out nondestructive monitoring of the tensile damage of the gearbox housing material in rail time,yet the traditional...Purpose-This study aims to ensure the operation safety of high speed trains,it is necessary to carry out nondestructive monitoring of the tensile damage of the gearbox housing material in rail time,yet the traditional tests of mechanical property can hardly meet this requirement.Design/methodology/approach-In this study the acoustic emission(AE)technology is applied in the tensile tests of the gearbox housing material of an high-speed rail(HSR)train,during which the acoustic signatures are acquired for parameter analysis.Afterward,the support vector machine(SVM)classifier is introduced to identify and classify the characteristic parameters extracted,on which basis the SVM is improved and the weighted support vector machine(WSVM)method is applied to effectively reduce the misidentification of the SVM classifier.Through the study of the law of relations between the characteristic values and the tensile life,a degradation model of the gearbox housing material amid tensile is built.Findings-The results show that the growth rate of the logarithmic hit count of AE signals and that of logarithmic amplitude can well characterize the stage of the material tensile process,and the WSVM method can improve the classification accuracy of the imbalanced data to above 94%.The degradation model built can identify the damage occurred to the HSR gearbox housing material amid the tensile process and predict the service life remains.Originality/value-The results of this study provide new concepts for the life prediction of tensile samples,and more further tests should be conducted to verify the conclusion of this research.展开更多
Laser technology holds significant promise for enhancing rock-breaking efficiency.Experimental investigations were carried out on sandstone subjected to laser radiation,aiming to elucidate its response mechanism to su...Laser technology holds significant promise for enhancing rock-breaking efficiency.Experimental investigations were carried out on sandstone subjected to laser radiation,aiming to elucidate its response mechanism to such radiation.The uniaxial compressive strength of sandstone notably decreases by 22.1%–54.7%following exposure to a 750 W laser for 30 s,indicating a substantial weakening effect.Furthermore,the elastic modulus and Poisson ratio of sandstone exhibit an average decrease of 33.7%and 25.9%,respectively.Simultaneously,laser radiation reduces the brittleness of sandstone,increases the dissipated energy proportion,and shifts the failure mode from tensile to tension-shear composite failure.Following laser radiation,both the number and energy of acoustic emission events in the sandstone register a substantial increase,with a more dispersed distribution of these events.In summary,laser radiation induces notable damage to the mechanical properties of sandstone,leading to a substantial decrease in elastic energy storage capacity.Laser rock breaking technology is expected to be applied in hard rock breaking engineering to significantly reduce the difficulty of rock breaking and improve rock breaking efficiency.展开更多
To study the damage evolution behavior of polypropylene fiber reinforced concrete(PFRC)subjected to sulfate attack,a uniaxial compression test was carried out based on acoustic emission(AE).The effect of sulfate attac...To study the damage evolution behavior of polypropylene fiber reinforced concrete(PFRC)subjected to sulfate attack,a uniaxial compression test was carried out based on acoustic emission(AE).The effect of sulfate attack relative to time and fiber hybridization were analyzed and the compression damage factor was calculated using a mathematical model.The changes to AE ringing counts during the compression could be divided into compaction,elastic,and AE signal hyperactivity stages.In the initial stage of sulfate attack,the concrete micropores and microcracks were compacted gradually under external load and a corrosion products filling effect,and this corresponded with detection of few AE signals and with concrete compression strength enhancement.With increasing sulfate attack time,AE activity decreased.The cumulative AE ringing counts of PFRC at all corrosion ages were much higher than those for plain concrete.PFRC could still produce AE signals after peak load due to drawing effect of polypropylene fiber.After 150 d of sulfate attack,the cumulative AE ringing counts of plain concrete went down by about an order of magnitude,while that for PFRC remained at a high level.The initial damage factor of hybrid PFRC was-0.042 and-0.056 respectively after 150 d of corrosion,indicating that the advantage of hybrid polypropylene fiber was more obvious than plain concrete and single-doped PFRC.Based on a deterioration equation,the corrosion resistance coefficient of hybrid PFRC would be less than 0.75 after 42 drying-wetting sulfate attack cycles,which was 40%longer than that of plain concrete.展开更多
Linear source location of acoustic emission (AE) technique has been applied in the present paper for finding the source of material damage under fatigue loading. A plate type structure of ductile cast iron has been us...Linear source location of acoustic emission (AE) technique has been applied in the present paper for finding the source of material damage under fatigue loading. A plate type structure of ductile cast iron has been used to undergo fatigue damage in a servopulsing machine in the experiment. AE sensors were attached to the specimen for getting the time delay of AE signal propagations through the specimen. After receiving the time delay data of AE signals due to the damage initiation in the material for the provided fatigue loads, linear source location algorithm has been applied and the crack positions are identified. Before applying the technique, a series of pencil lead breaks (PLBs) tests have been conducted upon a ductile cast iron plate of same dimension for verifying the applied algorithm. According to the PLBs varification, the failure location of ductile cast iron (pearlite type) due to the fatigue loading has been characterized. In both experiments, the active ability of the proposed technique for source location of structural damage has been identified clearly and successfully.展开更多
The model of the relationship of AE parameter,damage variable and strain is derived by applying the damage theory and micro-element statistical strength theory.The relation between AE characteristics during rock failu...The model of the relationship of AE parameter,damage variable and strain is derived by applying the damage theory and micro-element statistical strength theory.The relation between AE characteristics during rock failure and machine stiffness is analyzed under uniaxial compression with the above model.Based on the above analysis,the internal connection among AE activity law and seisraogenic process and earthquake activity is discussed.展开更多
Based on the acoustic emission (AE) mechanics of concrete loaded at different stages,by usirg the AE characteristics at different stages, the relationships between parameters of AE and damage have been derived, the 1-...Based on the acoustic emission (AE) mechanics of concrete loaded at different stages,by usirg the AE characteristics at different stages, the relationships between parameters of AE and damage have been derived, the 1-dimensional constitutive relation of concrete,in which its damage parameters are expressed by AE parameters, is also obtained. Therefore, it is proposed that the damage degree of concrete can be evaluated and estimated by using AE characteristics. The analytical results coincide quite well with the actuality of concrete.展开更多
The performances of the cement-based materials can be improved by the incorporation of polypropylene fiber, but the damage processes become more complex with different fiber contents at the same time. The acoustic emi...The performances of the cement-based materials can be improved by the incorporation of polypropylene fiber, but the damage processes become more complex with different fiber contents at the same time. The acoustic emission(AE) technology can achieve the global monitoring of internal damage in materials. The evolution process of failure mode and damage degree of polypropylene fiber reinforced mortar and concrete were analyzed by measuring the AE energy, RA value, AF value and b value. It was found that the cement matrix cracked on the initial stage, the cracks further developed on the medium stage and the fibers were pulled out on the last stage. The matrix cracked with minor injury cracks, but the fiber broke with serious damage cracks. The cumulative AE energy was proportional to the polypropylene fiber reinforced concrete and mortar's ductility. The damage mode and damage degree can be judged by identifying the damage stage obtained by the analysis of the AF value.展开更多
Since the similarity in size distribution of earthquakes and acoustic emissions (AE) was found in the 1960s, many laboratory studies have been motivated by the need to provide tools for the prediction of mining fail...Since the similarity in size distribution of earthquakes and acoustic emissions (AE) was found in the 1960s, many laboratory studies have been motivated by the need to provide tools for the prediction of mining failures and natural earthquakes. This paper aims, on the one hand, to draw an outline of laboratory AE studies in the last 50 years, which have addressed seismological problems. Topics include the power laws in which the similarity between AEs and earthquakes is involved and progress that has been made in AE technology and laboratory AE study. On the other hand, this study will highlight some key issues intensively discussed, especially in the last three decades, such as aspects related to the pre-failure damage evolution, fault nucleation and growth in brittle rocks and discuss factors governing these processes.展开更多
Development and testing of a serially multiplexed fiber optic sensor system is described.The sensor differs from conventional fiber optic acoustic systems,as it is capable of sensing AE emissions at several points alo...Development and testing of a serially multiplexed fiber optic sensor system is described.The sensor differs from conventional fiber optic acoustic systems,as it is capable of sensing AE emissions at several points along the length of a single fiber.Multiplexing provides for single channel detection of cracks and their locations in large structural systems. An algorithm was developed for signal recognition and tagging of the AE waveforms for detection of' crack locations,Labora- tory experiments on plain concrete beams and post-tensioned FRP tendons were pcrlormed to evaluate the crack detection capability of the sensor system.The acoustic emission sensor was able to detect initiation,growth and location of the cracks in concrete as well as in the FRP tendons.The AE system is potentially suitable lot applications involving health monitoring of structures following an earthquake.展开更多
文摘Zirconia ceramics have become increasingly widely used in recent years and are favored by relevant enterprises. From the traditional dental field to aerospace, parts manufacturing has been used, but there is limited research on the deformation and damage process of zirconia ceramics. This article analyzes the acoustic emission characteristics of each stage of ceramic damage from the perspective of acoustic emission, and explores its deformation process characteristics from multiple perspectives such as time domain, frequency, and EWT modal analysis. It is concluded that zirconia ceramics exhibit higher brittleness and acoustic emission strength than alumina ceramics, and when approaching the fracture, it tends to generate lower frequency acoustic emission signals.
基金supported by the National Natural Science Foundation of China(Grant No.52108379)the Natural Science Foundation of Hebei Province(No.E2021210002)+3 种基金the Youth Top Talent Program,Education Department of Hebei Province(No.BJK2022047)Innovation Research Group Program of Natural Science,the Hebei Province(No.E2021210099)the Technology Development Project of Shuohuang Railway Development Co.,Ltd.(No.GJNY-20-230)the Innovation Research for the Postgraduates of Shijiazhuang Tiedao University(No.YC2023009).
文摘Recently developed multi-scale fiber(i.e.,CaCO3 whisker,polyvinyl alcohol(PVA)fiber,and steel fiber)reinforced rubberized concrete exhibits excellent mechanical properties and spalling resistance at high temperatures.Measurement of macro properties such as strength and Young’s modulus cannot reveal and characterize damage mechanisms,particularly those relating to the multi-scale fiber strengthening effect.In this study,acoustic emission(AE)technology is applied to investigate the impact of multi-scale fiber on the damage evolution of rubberized concrete exposed to high temperatures,under the uniaxial compression and tension loading processes.The mechanical properties,AE event location,peak frequency,b-value,the ratio of rise time to amplitude(RA),average frequency(AF)values,and AE energy of specimens are investigated.The results show that the number of events observed using AE gradually increases as the loading progresses.The crumb rubber and fibers inhibit the generation and development of the cracks.It is concluded that both the peak frequency and b-value reflect the extension process of cracks.As the cracks develop from the micro scale to the macro scale,the peak frequency tends to be distributed in a lower frequency range,and the b-value decreases gradually.At the peak stress point,the AE energy increases rapidly and the b-value decreases.The specimens without multi-scale fibers exhibit brittle failure,while the specimens with fibers exhibit ductile failure.In addition,adding multi-scale fibers and crumb rubber increases the peak frequency in the medium and high frequency ranges,indicating a positive effect on inhibiting crack development.After being subjected to high temperatures,the maximum and minimum b-values decrease,reflecting an increase in the number of initial cracks due to thermal damage.Meanwhile,the RA and AF values are used to classify tensile and shear cracks.The specimens fracture with more shear cracks under compression,and there are more tensile cracks in specimens with multi-scale fibers under tension.
基金Supported by the Key Program of National Basic Research Program(973)of China(2005CB221505)the National Natural Science Foundation of China(2005E041503)
文摘Based on statistical damage mechanics,the constitutive model of a rock underthree-dimensional stress was established by the law that the statistical strength of rockmicro-element obeys Weibull distribution.The acoustic emission (AE) evolution model ofrock failure was put forward according to the view that rock damage and AE were consistent.Moreover,in the failure process of rock under three-dimensional stress,the change inrelationship between stress condition parameter and the characteristic parameters of AE,such as the event number and its change rate,were studied.Also,the rock AE characteristicunder uniaxial compression was analyzed in theory and verified with examples.Theresults indicate that the cumulative event number and change rate of AE in rock failure aredetermined by stress state parameter F.Along with the gradual increase of F,first the cumulativeevent number increases gradually,then rapidly,and then slowly after the stresspeak.The form of change rate of an event by increasing F is consistent with the distributionform of rock micro-element strength.The model explained the phenomenon that a relativelyquiet period of AE appears before rock rupture that is observed by many researchersin experiments.Verification examples indicate that the AE evolution model is consistentwith the test results,so the model is reasonable and correct.
基金Beijing Natural Science Foundation(8214060)National Natural Science Foundation of China(42107164).
文摘To study the relationship between acoustic emission characteristic parameters of self-compacting concrete(SCC)and its destruction evolution,under uniaxial compression,acoustic emission(AE)tests are performed on C30 selfcompacting concrete test blocks that are preserved for 7 days and 28 days,the corresponding relationship among energy,amplitude,ring count and different failure stages of the specimens are analyzed by AE experiment,and the spatial distribution of AE in each stage is described by introducing location map.The test shows that there are two rules for the failure of SCC specimens cured for 7 days and 28 days:(1)The first failure law is divided into four stages according to the percentage of the stress value reaching the limit stress:Initial stage:above 10%,the compaction time of test block cured for 28 days is relatively low;Elastic failure stage:30%–35%,the cumulative value of each parameter increases linearly,and the cumulative value of the amplitude is the largest;Crack stable propagation stage:35%–90%,there is a moment that causes local stress concentration in both test blocks;Active stage:above 90%,the cumulative value of the parameter rises sharply,then continues to load the test block instability and damage.(2)The second failure law is divided into five stages according to the percentage of the stress value reaching the limit stress:Initial stage:15%–20%,the cumulative value of each parameter increases with time;Elastic failure stage:20%–40%,the cumulative value of the parameter continues to grow,but the growth curve is approximately parallel;Crack stable propagation stage:40%–60%,all parameters increased sharply and the increase reached the peak of the whole process;A stable state:60–80%,the emission characteristic parameter will become zero,and the stable state of the 28 days curing test block is lagging;Active stage:above 90%,the number of signals increased sharply,but the energy and amplitude are low,and the later test block is completely fractured.(3)In the process of failure,the test block of SCC will form an inverted triangle or landslide failure surface,and the part above the failure surface is prone to failure,and there is a tendency to leave the test block.(4)Under uniaxial compression,the penetration of SCC cracks is mostly shear penetration.
基金Funded by the National Natural Science Foundation of China (No. 50104013)
文摘The characteristics of acoustic emission (AE) signals given off in the course of the failure of a concrete structure is explored based on the laboratory experiments with concrete specimens. It is observed that the failure of a concrete structure experiences three stages divided by two inflexion points on the AE event curve, which are sequentially no damage, damage initiation and propagation, and major failure stages. In the first stage, existing micro cracks and defects are compacted by loading, but no damage propagated, hence few AE signals are detected, and it appears that there exists a nearly linear relationship between the relative stress and relative strain. In the second stage, the AE event frequency increases, implying that micro cracks begin to emerge inside the concrete structure, which is consistent with the damage mechanics. When the load is over 80 % of that breaks the structure, i.e. the maximum load, there is a vertical jump on the AE event count curve, which suggests that the failure propagation speeds up. After the second inflexion point, the AE event density increases faster than before, and there is another jump just before breaking, which indicates a quick propagation stage. These findings are valuable for evaluating the damage situations, and for studying and monitoring the dynamic process of the failure behaviors of a concrete structure.
文摘AE (acoustic emission) signals from concrete slab during fatigue testing with a running-wheel load were evaluated. The signals were recorded by remote sensors connected to a computer network. The sensing equipment consisted of 60 kHz resonant-type AE sensors mounted on a reinforcing steel bar as a waveguide, together with a 16-channel sensor highway AE system. Because the detected AE signals included periodic mechanical noise from the motion of the wheel, these noises were eliminated by means of signal processing. The AE waveguide measurement over a length of 3 m detected fractures as vertical and horizontal cracks in the RC (reinforced concrete) slab. Those cracks were analyzed by correlating AE parameters with macroscopic distortions and the numbers of fatigue cycles. In the AE events and AE energy, two types of AE phenomena, active region and inactive region, were observed during fatigue testing. The vertical cracks were characterized by an AE amplitude of 58 dB, a peak frequency of 30 kHz, and a ratio of the rise time to the maximum amplitude value (RA) of 100. The horizontal cracks were characterized by an AE amplitude of 85 dB, a peak frequency of 60 kHz, and an RA value of 10.
基金Project(2213K3170027) supported by the Shenzhen Polytechnic Project Fund,China
文摘In order to characterize different damage modes, real-time detection of the tensile cracking process for AZ31 magnesium alloy was performed using acoustic emission (AE) technique. Results showed that elastic deformation, plastic deformation, microcracking, stable and unstable propagation occurred during crack damage. Four damage modes were determined using AE multiparameter analysis. Dislocation motion signals with amplitudes 〈70 dB and twinning signals with 70-100 dB were found. Microcrack signal energy was concentrated from 2400 aJ to 4100 aJ, mainly at a rise time of less than 800 gs. A stable crack propagation signal had high peak to counts in the 20 to 50 range, whereas its ring count was in the 20 to 2000 range. The average frequency of unstable propagation signals was approximately 100 kHz, with duration from 2000 gs to 10s gs. The damage mechanisms and AE resources from different crack propagation steps were discussed. Various damage modes could be characterized by different AE signal parameters when they appeared simultaneously during crack propagation.
文摘For understanding acoustic emission (AE) activity and accumulation of micro-damage inside rock under pure tensile state, the AE signals has been monitored on the test of directly tension on two kinds of marble specimens. A tensile constitutive model was proposed with the damage factor calculated by AE energy rate. The tensile strength of marble was discrete obviously and was sensitive to the inside microdefects and grain composition. With increasing of loading, the tensile stress-strain curve obviously showed nonlinear with the tensile tangent modulus decreasing. In repeated loading cycle, the tensile elastic modulus was less than that in the previous loading cycle because of the generation of micro damage during the prior loading. It means the linear weakening occurring in the specimens. The AE activity was corresponding with occurrence of nonlinear deformation. In the initial loading stage which only elastic deformation happened on the specimens, there were few AE events occurred; while when the nonlinear deformation happened with increasing of loading, lots of AE events were generated. The quantity and energy of AE events were proportionally related to the variation of tensile tangent modulus. The Kaiser effect of AE activity could be clearly observed in tensile cycle loading. Based on the theory of damage mechanics, the damage factor was defined by AE energy rate and the tensile damage constitutive model was proposed which only needed two property constants. The theoretical stress-strain curve was well fitted with the curve plotted with tested datum and the two property constants were easily gotten by the laboratory testing.
基金Projects(51308073,51378081)supported by the National Natural Science Foundation of ChinaProject(20124316120002)supported by PhD Programs Foundation of Ministry of Education of China+1 种基金Project(12KB02)supported by the Key Laboratory for Safety Control of Bridge Engineering of Ministry of Education of ChinaProject(14JJ3087)supported by the Science Foundation of Hunan Province,China
文摘Utilizing the acoustic emission(AE) technique, an experimental investigation into the damage evolution for steel strand under axial tension was described. The damage evolution model for steel stand relating the damage evolution to acoustic emission parameters was proposed by incorporating the AE rate process theory. The AE monitoring results indicate that damages occur in both elastic and plastic phases of steel strand. In elastic phase, AE signals are mainly sent out from the micro damage due to the surface friction among the wires of steel strand, while in plastic phase, AE signals emitted from the plastic deformation of wires. In addition, the AE cumulative parameters curves closely resemble the loading curve. The AE cumulative parameters curves can well describe the damage evolution process including the damage occurrence and damage development for steel strands. It is concluded that the AE technique is an effective and useful nondestructive technique for evaluating the damage characteristics of steel strand.
基金Sponsored by the National Natural Science Foundation of China(10772027,10602080)
文摘Advanced multi-channels acoustic emission (A.E) system is used to study the fracture process of alumina material subjected by three-point-bending loading. Using AE counts and AE hits, the location of damage and damage characteristics are discussed. AE energy, AE counts, AE amplitude changing with loading time are analyzed for the notched alumina specimen. It is indicated that AE characteristic parameters reflect the damage process and fracture of material.
基金Funded by the National Natural Science Foundation of China(Nos.11662015,51768059 and 51468053)。
文摘With the risk of disappearing for the rock paintings considering long-term exposure in Helan Mountain,the freeze-thaw(F-T)cycling experiments were carried out with 12-hour F-T cycling(0,10,20,30,and 40 F-T cycles)under five kinds of confining pressures(5,10,20,30,and 40 MPa).The acoustic emission(AE)detect technology was used to reveal the rock fracturing characteristics during the triaxial compression test whole process.The stress-strain relation changes along with different confining pressures and F-T cycles.Peak stress and residual stress changes along with different confining pressures and damages,and the variation of axial stress-AE ringing counts-time changes along with different confining pressures and F-T cycles.The damage variable with AE parameter under F-T and force coupling was defined for the first time,and the damages model was established.The experimental results show that the F-T cycles lead to the decrease of rock strength and the gradual transformation of compression failure mode from brittleness to plasticity.The confining pressure provides a certain ability to resist deformation and inhibit crack growth for rock samples after F-T cycles.The temporal and spatial evolution law of AE counts well corresponds to the loading and failure process of the rock samples.The AE 3D positioning technology can accurately capture the development position and direction of internal cracks and pores of rock,and the failure form is conical shear failure.The established damage model has a better fittingness between the theoretical calculation results and the test results,and is reasonable to be used in the future for protection of Helan Mountain rock painting.
基金supported by the National Natural Science Foundation of China (Grant No.U61273205).
文摘Purpose-This study aims to ensure the operation safety of high speed trains,it is necessary to carry out nondestructive monitoring of the tensile damage of the gearbox housing material in rail time,yet the traditional tests of mechanical property can hardly meet this requirement.Design/methodology/approach-In this study the acoustic emission(AE)technology is applied in the tensile tests of the gearbox housing material of an high-speed rail(HSR)train,during which the acoustic signatures are acquired for parameter analysis.Afterward,the support vector machine(SVM)classifier is introduced to identify and classify the characteristic parameters extracted,on which basis the SVM is improved and the weighted support vector machine(WSVM)method is applied to effectively reduce the misidentification of the SVM classifier.Through the study of the law of relations between the characteristic values and the tensile life,a degradation model of the gearbox housing material amid tensile is built.Findings-The results show that the growth rate of the logarithmic hit count of AE signals and that of logarithmic amplitude can well characterize the stage of the material tensile process,and the WSVM method can improve the classification accuracy of the imbalanced data to above 94%.The degradation model built can identify the damage occurred to the HSR gearbox housing material amid the tensile process and predict the service life remains.Originality/value-The results of this study provide new concepts for the life prediction of tensile samples,and more further tests should be conducted to verify the conclusion of this research.
基金Projects(52225403,U2013603,42377143)supported by the National Natural Science Foundation of ChinaProject(2023NSFSC0004)supported by the Sichuan Science and Technology Program,China+1 种基金Project(2023YFB2390200)supported by the National Key R&D Program-Young Scientist Program,ChinaProject(RCJC20210706091948015)supported by the Shenzhen Science Foundation for Distinguished Young Scholars,China。
文摘Laser technology holds significant promise for enhancing rock-breaking efficiency.Experimental investigations were carried out on sandstone subjected to laser radiation,aiming to elucidate its response mechanism to such radiation.The uniaxial compressive strength of sandstone notably decreases by 22.1%–54.7%following exposure to a 750 W laser for 30 s,indicating a substantial weakening effect.Furthermore,the elastic modulus and Poisson ratio of sandstone exhibit an average decrease of 33.7%and 25.9%,respectively.Simultaneously,laser radiation reduces the brittleness of sandstone,increases the dissipated energy proportion,and shifts the failure mode from tensile to tension-shear composite failure.Following laser radiation,both the number and energy of acoustic emission events in the sandstone register a substantial increase,with a more dispersed distribution of these events.In summary,laser radiation induces notable damage to the mechanical properties of sandstone,leading to a substantial decrease in elastic energy storage capacity.Laser rock breaking technology is expected to be applied in hard rock breaking engineering to significantly reduce the difficulty of rock breaking and improve rock breaking efficiency.
基金The support from Mechanical Effect and Safety Analysis of Severely Damaged Tunnel Renovation Process(No.H20210058)is gratefully acknowledged.
文摘To study the damage evolution behavior of polypropylene fiber reinforced concrete(PFRC)subjected to sulfate attack,a uniaxial compression test was carried out based on acoustic emission(AE).The effect of sulfate attack relative to time and fiber hybridization were analyzed and the compression damage factor was calculated using a mathematical model.The changes to AE ringing counts during the compression could be divided into compaction,elastic,and AE signal hyperactivity stages.In the initial stage of sulfate attack,the concrete micropores and microcracks were compacted gradually under external load and a corrosion products filling effect,and this corresponded with detection of few AE signals and with concrete compression strength enhancement.With increasing sulfate attack time,AE activity decreased.The cumulative AE ringing counts of PFRC at all corrosion ages were much higher than those for plain concrete.PFRC could still produce AE signals after peak load due to drawing effect of polypropylene fiber.After 150 d of sulfate attack,the cumulative AE ringing counts of plain concrete went down by about an order of magnitude,while that for PFRC remained at a high level.The initial damage factor of hybrid PFRC was-0.042 and-0.056 respectively after 150 d of corrosion,indicating that the advantage of hybrid polypropylene fiber was more obvious than plain concrete and single-doped PFRC.Based on a deterioration equation,the corrosion resistance coefficient of hybrid PFRC would be less than 0.75 after 42 drying-wetting sulfate attack cycles,which was 40%longer than that of plain concrete.
文摘Linear source location of acoustic emission (AE) technique has been applied in the present paper for finding the source of material damage under fatigue loading. A plate type structure of ductile cast iron has been used to undergo fatigue damage in a servopulsing machine in the experiment. AE sensors were attached to the specimen for getting the time delay of AE signal propagations through the specimen. After receiving the time delay data of AE signals due to the damage initiation in the material for the provided fatigue loads, linear source location algorithm has been applied and the crack positions are identified. Before applying the technique, a series of pencil lead breaks (PLBs) tests have been conducted upon a ductile cast iron plate of same dimension for verifying the applied algorithm. According to the PLBs varification, the failure location of ductile cast iron (pearlite type) due to the fatigue loading has been characterized. In both experiments, the active ability of the proposed technique for source location of structural damage has been identified clearly and successfully.
文摘The model of the relationship of AE parameter,damage variable and strain is derived by applying the damage theory and micro-element statistical strength theory.The relation between AE characteristics during rock failure and machine stiffness is analyzed under uniaxial compression with the above model.Based on the above analysis,the internal connection among AE activity law and seisraogenic process and earthquake activity is discussed.
文摘Based on the acoustic emission (AE) mechanics of concrete loaded at different stages,by usirg the AE characteristics at different stages, the relationships between parameters of AE and damage have been derived, the 1-dimensional constitutive relation of concrete,in which its damage parameters are expressed by AE parameters, is also obtained. Therefore, it is proposed that the damage degree of concrete can be evaluated and estimated by using AE characteristics. The analytical results coincide quite well with the actuality of concrete.
基金Funded by National Natural Science Foundation of China(No.51009058)Postdoctoral Science Foundation of China(No.2011M501160)
文摘The performances of the cement-based materials can be improved by the incorporation of polypropylene fiber, but the damage processes become more complex with different fiber contents at the same time. The acoustic emission(AE) technology can achieve the global monitoring of internal damage in materials. The evolution process of failure mode and damage degree of polypropylene fiber reinforced mortar and concrete were analyzed by measuring the AE energy, RA value, AF value and b value. It was found that the cement matrix cracked on the initial stage, the cracks further developed on the medium stage and the fibers were pulled out on the last stage. The matrix cracked with minor injury cracks, but the fiber broke with serious damage cracks. The cumulative AE energy was proportional to the polypropylene fiber reinforced concrete and mortar's ductility. The damage mode and damage degree can be judged by identifying the damage stage obtained by the analysis of the AF value.
基金financial support by the Japan Science Promotion Society(JSPS 21246134)
文摘Since the similarity in size distribution of earthquakes and acoustic emissions (AE) was found in the 1960s, many laboratory studies have been motivated by the need to provide tools for the prediction of mining failures and natural earthquakes. This paper aims, on the one hand, to draw an outline of laboratory AE studies in the last 50 years, which have addressed seismological problems. Topics include the power laws in which the similarity between AEs and earthquakes is involved and progress that has been made in AE technology and laboratory AE study. On the other hand, this study will highlight some key issues intensively discussed, especially in the last three decades, such as aspects related to the pre-failure damage evolution, fault nucleation and growth in brittle rocks and discuss factors governing these processes.
基金National Science Foundation,Grant number CMS-9900338
文摘Development and testing of a serially multiplexed fiber optic sensor system is described.The sensor differs from conventional fiber optic acoustic systems,as it is capable of sensing AE emissions at several points along the length of a single fiber.Multiplexing provides for single channel detection of cracks and their locations in large structural systems. An algorithm was developed for signal recognition and tagging of the AE waveforms for detection of' crack locations,Labora- tory experiments on plain concrete beams and post-tensioned FRP tendons were pcrlormed to evaluate the crack detection capability of the sensor system.The acoustic emission sensor was able to detect initiation,growth and location of the cracks in concrete as well as in the FRP tendons.The AE system is potentially suitable lot applications involving health monitoring of structures following an earthquake.