The concrete-faced rockfill dam(CFRD) is an important dam type in the selection of high dams to be constructed in Western China,owing to its direct utilization of local materials,good adaptability,and distinct economi...The concrete-faced rockfill dam(CFRD) is an important dam type in the selection of high dams to be constructed in Western China,owing to its direct utilization of local materials,good adaptability,and distinct economic advantages.Over the past decades,China has gained successful experience in the construction of 200 m CFRDs,providing the necessary technical accumulation for the development of 250–300 m ultra-high CFRDs.This paper summarizes these successful experiences and analyzes the problems of a number of major 200 m CFRDs around the world.In addition,it discusses the key technologies and latest research progress regarding safety in the construction of 250–300 m ultra-high CFRDs,and suggests focuses and general ideas for future research.展开更多
This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock m...This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock mass was used for equivalent continuous seepage field analysis based on the improved node virtual flow method. Using a high CFRD as an example, the generalized equivalent continuum range was determined, and a finite element model was established based on the terrain and geological conditions, as well as structural face characteristics of the dam area. The equivalent seepage coefficients of different material zones or positions in the dam foundation were calculated with the Snow model or inverse analysis. Then, the 3 D seepage field in the dam area was calculated under the normal water storage conditions, and the corresponding water head distribution, seepage flow, seepage gradient, and seepage characteristics in the dam area were analyzed. The results show that the generalized equivalent continuum model can effectively simulate overall seepage patterns of the CFRD under complex hydraulic conditions and provide a reference for seepage analysis of similar CFRDs.展开更多
A simplified physically-based model was developed to simulate the breaching process of the Gouhou concrete-faced rockfill dam (CFRD), which is the only breach case of a high CFRD in the world. Considering the dam he...A simplified physically-based model was developed to simulate the breaching process of the Gouhou concrete-faced rockfill dam (CFRD), which is the only breach case of a high CFRD in the world. Considering the dam height, a hydraulic method was chosen to simulate the initial scour position on the downstream slope, with the steepening of the downstream slope taken into account; a headcut erosion formula was adopted to simulate the backward erosion as well. The moment equilibrium method was utilized to calculate the ultimate length of a concrete slab under its self-weight and water loads. The calculated results of the Gouhou CFRD breach case show that the proposed model provides reasonable peak breach flow, final breach width, and failure time, with relative errors less than 15% as compared with the measured data. Sensitivity studies show that the outputs of the proposed model are more or less sensitive to different parameters. Three typical parametric models were compared with the proposed model, and the comparison demonstrates that the proposed physically-based breach model performs better and provides more detailed results than the parametric models.展开更多
The theory and method of system integration for the real-time monitoring of core rock-fill dam filling con- struction quality are studied in this paper. First, the importance analysis of system integration factors is ...The theory and method of system integration for the real-time monitoring of core rock-fill dam filling con- struction quality are studied in this paper. First, the importance analysis of system integration factors is carried out with the analytic hierarchy process. Then, according to the analysis result of integration factors, the conceptual model of system integration is built based on function integration, index integration, technology integration and information integration, the index structure of core rock-fill dam filling construction quality control is constructed and the method of function integration and technology integration is studied. The mathematical model of process monitoring is built according to monitoring objective, process and indexes. Research results have been applied in Nuozhadu core rock-fill dam construction management, realizing system integration through building appropriate monitoring work flow and comprehensive information platform of digital dam.展开更多
An optimal allocation of earth is of great significance to reduce the project cost and duration in the construction of rock-fill dams. The earth allocation is a dynamic system affected by various time-space constraint...An optimal allocation of earth is of great significance to reduce the project cost and duration in the construction of rock-fill dams. The earth allocation is a dynamic system affected by various time-space constraints. Based on previous studies, a new method of optimizing this dynamic system as a static one is presented. In order to build a generalized and flexible model of the problem, some man-made constraints were investigated in building the mathematic model. Linear programming and simplex method are introduced to solve the optimization problem of earth allocation. A case study in a large-scale rock-fill dam construction project is presented to demonstrate the proposed method and its successful application shows the feasibility and effectiveness of the method.展开更多
This study presents earthquake performance analysis of the Torul Concrete-Faced Rockfill (CFR) Dam with two-dimensional dam-soil and dam-soil-reservoir finite element models. The Lagrangian approach was used with fl...This study presents earthquake performance analysis of the Torul Concrete-Faced Rockfill (CFR) Dam with two-dimensional dam-soil and dam-soil-reservoir finite element models. The Lagrangian approach was used with fluid elements to model impounded water. The interface elements were used to simulate the slippage between the concrete face slab and the rockfill. The horizontal component of the 1992 Erzincan earthquake, with a peak ground acceleration of 0.515g, was considered in time-history analysis. The Drucker-Prager model was preferred in nonlinear analysis of the concrete slab, rockfill and foundation soil. The maximum principal stresses and the maximum displacements in two opposite directions were compared by the height of the concrete slab according to linear time-history analysis to reveal the effect of reservoir water. The changes of critical displacements and principal stresses with time are also shown in this paper. According to linear and nonlinear time-history analysis, the effect of the reservoir water on the earthquake performance of the Torul CFR Dam was investigated and the possible damage situation was examined. The results show that the hydrodynamic pressure of reservoir water leads to an increase in the maximum displacements and principal stresses of the dam and reduces the earthquake performance of the dam. Although the linear time-history analysis demonstrates that the earthquake causes a momentous damage to the concrete slab of the Torul CFR Dam, the nonlinear time-history analysis shows that no evident damage occurs in either reservoir case.展开更多
Based on the APDL (ANSYS Parametric Design Language) and combined with the actual project related to parameters of filling material, imported Duncan-Chang constitutive model which has been widely applied in soil mas...Based on the APDL (ANSYS Parametric Design Language) and combined with the actual project related to parameters of filling material, imported Duncan-Chang constitutive model which has been widely applied in soil mass and rock-fill in the ANSYS software. With the three-dimensional nonlinear finite element analysis by the mid-point incremental method, what have been computed are the deformation and stress analysis ofNa Ba reservoir CFRD (Concrete Face Rock-fill Dam) in filling period. The calculation results provide practical reference for the dam during construction safety filling stress and deformation analysis and real-time monitoring.展开更多
This paper compares the different inversion results of three different earth rock-fill dam models with the actual leakage passages by performing isotope tracing tests and resistivity tomographic tests. The accuracy of...This paper compares the different inversion results of three different earth rock-fill dam models with the actual leakage passages by performing isotope tracing tests and resistivity tomographic tests. The accuracy of the experimental results is evaluated, and the characteristics of these two methods are analyzed. As a result, some significant references are offered for earth rock-fill dam’s hidden defects detection. The experimental results show that the leakage and the direction of the seepage can be judged by isotope tracing tests, meanwhile, the degree of the leakage can be confirmed through the determination of the horizontal seepage velocity and the vertical seepage velocity, but it is difficult to properly determine the position of leakage passages and the range of leakage. Relatively speaking, the positions of the leakage passages can be accurately and directly displayed through resistivity tomographic tests. The experiment results show that the resistivity tomographic method is much better than isotope tracing method with regard to earth rock-fill dam’s hidden defects detection, and the resistivity tomographic method expresses much more convenience and much higher precision than isotope tracing method.展开更多
The leakage occurs during operation of the dam in Liuhuanggou reservoir. It’s a threat to the safety of the people’s lives and property in downstream. In order to eliminate the hidden danger of reservoir, ensure the...The leakage occurs during operation of the dam in Liuhuanggou reservoir. It’s a threat to the safety of the people’s lives and property in downstream. In order to eliminate the hidden danger of reservoir, ensure the safety of the dam, play better the function of flood control and water storage of the reservoir etc., we apply the 3D electrical resistivity tomography detecting technology and volume rendering image processing technology, make the measurement in field, process the data and combine the field survey to find out the leakage channels inside the dam. The results show that the 3D resistivity images appear the low resistivity zone corresponding with the leakage channels. There are two main leakage channels that come from different location inside the dam. It is feasible to diagnose the leakage in earth rock-fill dam by applying 3D electrical resistivity tomography.展开更多
Overtopping is one of the main reasons for the breaching of concrete-face sand-gravel dams(CFSGDs).In this study,a refined mathematical model was established based on the characteristics of the overtopping breaching o...Overtopping is one of the main reasons for the breaching of concrete-face sand-gravel dams(CFSGDs).In this study,a refined mathematical model was established based on the characteristics of the overtopping breaching of CFSGDs.The model characteristics were as follows:(1)Based on the Renormailzation Group(RNG)k-εturbulence theory and volume of fluid(VOF)method,the turbulent characteristics of the dam-break flow were simulated,and the erosion surface of the water and soil was tracked;(2)In consideration of the influence of the change in the sediment content on the dam-break flow,the dam material transport equation,which could reflect the characteristics of particle settlement and entrainment motion,was used to simulate the erosion process of the sand gravels;(3)Based on the bending moment balance method,a failure equation of the concrete face slab under dead weight and water load was established.The proposed model was verified through a case study on the failure of the Gouhou CFSGD.The results showed that the proposed model could well simulate the erosion mode of the special vortex flow of the CFSGD scouring the support body of the concrete face slab inward and reflect the mutual coupling relationship between the dam-break flow,sand gravels,and concrete face slabs.Compared with the measured values,the relative errors of the peak discharge,final breach average width,dam breaching duration,and maximum failure length of the face slab calculated using the proposed model were all less than 12%,thus verifying the rationality of the model.The proposed model was demonstrated to perform better and provide more detailed results than three selected parametric models and three simplified mathematical models.The study results can aid in establishing the risk level and devising early warning strategies for CFSGDs.展开更多
In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries a...In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries across the world is gathered with their reported settlements. The results showed that the GP model is able to estimate the dam settlement properly based on four properties, void ratio of dam’s body (e), height (H), vertical deformation modulus (Ev) and shape factor (Sc) of the dam. For verification of the model applicability, obtained results compared with other research methods such as Clements’s formula and the finite element model. The comparison showed that in all cases the GP model led to be more accurate than those of performed in literature. Also a proper compatibility between the GP model and the finite element model was perceived.展开更多
To find the distribution patterns of dynamic amplification coefficients for dams subjected to earthquake, 3D seismic responses of concrete-faced rockfill dams with different heights and different shapes of river valle...To find the distribution patterns of dynamic amplification coefficients for dams subjected to earthquake, 3D seismic responses of concrete-faced rockfill dams with different heights and different shapes of river valley were analyzed by using the equivalent-linear model. Statistical analysis was also made to the seismic coefficient, and an empirical formula for calculating the maximum acceleration was provided. The results indicate that under the condition of the same dam height and the same base acceleration excitations, with the increase of the river valley width, the position of the maximum acceleration on the axis of the top of the dam moves from the center to the riversides symmetrically. For the narrow valleys, the maximum acceleration occurs in the middle of the axis at the top of the dam; for wide valleys the maximum acceleration appears near the riversides. The result negates the application of 2D dynamical computation for wide valleys, and shows that for the seismic response of high concrete-faced rockfill dams, the seismic coefficient along the axis should be given, except for that along the dam height. Seismic stability analysis of rockfill dams using pseudo-static method can be modified according to the formula.展开更多
Over the past few decades,one of the most significant advances in dam construction has been the inven-tion of the rock-filled concrete(RFC)dam,which is constructed by pouring high-performance self-compacting concrete(...Over the past few decades,one of the most significant advances in dam construction has been the inven-tion of the rock-filled concrete(RFC)dam,which is constructed by pouring high-performance self-compacting concrete(HSCC)to fill the voids in preplaced large rocks.The innovative use of large rocks in dam construction provides engineers with a material that requires less cement consumption and hydration heat while enhancing construction efficiency and environmental friendliness.However,two fundamental scientific issues related to RFC need to be addressed:namely,the pouring compactness and the effect of large rocks on the mechanical and physical properties of RFC.This article provides a timely review of fundamental research and innovations in the design,construction,and quality control of RFCdams.Prospects for next-generation concrete dams are discussed from the perspectives of envi-ronmental friendliness,intrinsic safety,and labor savings.展开更多
Considering the complex nonlinear relationship between the material parameters of a concrete faced rock-fill dam(CFRD) and its displacements, the harmony search(HS) algorithm is used to optimize the back propagation n...Considering the complex nonlinear relationship between the material parameters of a concrete faced rock-fill dam(CFRD) and its displacements, the harmony search(HS) algorithm is used to optimize the back propagation neural network(BPNN), and the HS-BPNN algorithm is formed and applied for the inversion analysis of the parameters of rock-fill materials. The sensitivity of the parameters in the Duncan and Chang's E-B model is analyzed using the orthogonal test design. The case study shows that the parameters φ0, K, Rf, and Kb are sensitive to the deformation of the rock-fill dam and the inversion analysis for these parameters is performed by the HS-BPNN algorithm. Compared with the traditional BPNN, the HS-BPNN algorithm exhibits the advantages of high convergence precision, fast convergence rate, and strong stability.展开更多
This paper summarizes the main technical points related to 100 m-height-scale concrete faced rock-fill dams and analyzes the main problems and their causes occurring during construction of 200 m-height-scale concrete ...This paper summarizes the main technical points related to 100 m-height-scale concrete faced rock-fill dams and analyzes the main problems and their causes occurring during construction of 200 m-height-scale concrete faced rock-fill dams. This paper has raised the key technical problems which need to study for construction of 300 m-height-scale concrete faced rock-fill dams based on the main experiences on the extra-high concrete faced rock-fill dams built after the year of 2000.展开更多
This paper demonstrates the difficulties in determining the relevant material parameters for a valuation of the deformation behavior of the up-and downstream dam shell by means of an embankment dam of medium height.La...This paper demonstrates the difficulties in determining the relevant material parameters for a valuation of the deformation behavior of the up-and downstream dam shell by means of an embankment dam of medium height.Laboratory as well as field tests on solid rock-fill material were performed before the beginning of construction.During the construction the properties of the available rock-fill changed from solid to soft materials.This gave rise to the necessity of adjusting the dam design of the downstream dam shoulder.Several times higher dam settlements as well as significant differential settlements between the up-and downstream dam shell were observed during construction and operation.Apart from this situation,the dam has been operated for nearly 20 years and the behavior of the water barrier has been very good.展开更多
For an overtopped rock-fill dam, the flow field consists of open flow and seepage flow, which have different properties. The overflow is characterized as variable flow and the seepage flow is not the Darcy flow, but n...For an overtopped rock-fill dam, the flow field consists of open flow and seepage flow, which have different properties. The overflow is characterized as variable flow and the seepage flow is not the Darcy flow, but non-Darcy flow. For the analysis of the flow characters, using the energy theory and the FEM, the author presents a method to calculate the combined flow (i. e. flow over and through a dam ) in this paper. The experimental work shows that, the calculated results agree well with the experimental ones.Therefore, it is not only possible, but also feasible to solve this problem with the presented method.展开更多
Reasonable seismic response analysis of a high rockfill dam is of great engineering significance in guiding its design and ensuring its seismic safety during operation,especially of a concrete-faced rockfill dam(CFRD)...Reasonable seismic response analysis of a high rockfill dam is of great engineering significance in guiding its design and ensuring its seismic safety during operation,especially of a concrete-faced rockfill dam(CFRD)on overburden layers.The three-dimensional seismic behavior of the Miaojiaba CFRD is simulated and analyzed by the finite element method(FEM).The results indicate that:1)the amplification coefficient along the dam axis gradually increases with the altitude,and reaches maximum at the dam crest;2)the vertical residual deformation mainly exhibits downwards and reaches maximum near the dam crest;3)the earthquake significantly aggravates the deformation of peripheral joints;4)the impounding condition and overburden characteristics have great effects on the dam's seismic response.展开更多
On May 12, 2008, a major earthquake measured 8 on the Richter scale jolted Wenchuan County in Si- chuan Province, China with the epicentral intensity of XI degrees. Zipingpu Dam is located 17.17 km from the epicenter ...On May 12, 2008, a major earthquake measured 8 on the Richter scale jolted Wenchuan County in Si- chuan Province, China with the epicentral intensity of XI degrees. Zipingpu Dam is located 17.17 km from the epicenter and the influence intensity at the damsite reached IX―X degrees. It is the first time in the world for such a high concrete-faced rockfill dam (CFRD) in China to experience such a strong earthquake occurring in such a short distance. Due to its location of special importance to the down- stream areas, the safety state and damaging condition of the Zipingpu Dam has attracted great atten- tions from various circles. Based on site investigation of the damages to the Zipingpu Dam and com- parison analysis of the observation data obtained before and after the earthquake, the paper makes a comprehensive assessment of the key technical issues relevant to this high CFRD, including its safety state and the high slope stability after the earthquake.展开更多
In this study,sprayable strain-hardening fiber-reinforced cementitious composites(FRCC)were applied to strengthen the concrete slabs in a concrete-face rockfill dam(CFRD)for the first time.Experimental,numerical,and a...In this study,sprayable strain-hardening fiber-reinforced cementitious composites(FRCC)were applied to strengthen the concrete slabs in a concrete-face rockfill dam(CFRD)for the first time.Experimental,numerical,and analytical investigations were carried out to understand the flexural properties of FRCC-layered concrete slabs.It was found that the FRCC layer improved the flexural performance of concrete slabs significantly.The cracking and ultimate loads of a concrete slab with an 80 mm FRCC layer were 132%and 69%higher than those of the unstrengthened concrete slab,respectively.At the maximum crack width of 0.2 mm,the deflection of the 80-mm FRCC strengthened concrete slab was 144%higher than that of the unstrengthened concrete slab.In addition,a FE model and a simplified analytical method were developed for the design and analysis of FRCC-layered concrete slabs.Finally,the test result of FRCC leaching solution indicated that the quality of the water surrounding FRCC satisfied the standard for drinking water.The findings of this study indicate that the sprayable strain-hardening FRCC has a good potential for strengthening hydraulic structures such as CFRDs.展开更多
文摘The concrete-faced rockfill dam(CFRD) is an important dam type in the selection of high dams to be constructed in Western China,owing to its direct utilization of local materials,good adaptability,and distinct economic advantages.Over the past decades,China has gained successful experience in the construction of 200 m CFRDs,providing the necessary technical accumulation for the development of 250–300 m ultra-high CFRDs.This paper summarizes these successful experiences and analyzes the problems of a number of major 200 m CFRDs around the world.In addition,it discusses the key technologies and latest research progress regarding safety in the construction of 250–300 m ultra-high CFRDs,and suggests focuses and general ideas for future research.
基金supported by the National Natural Science Youth Foundation of China(Grant No.51309101)the Henan Province Major Scientific and Technological Projects(Grant No.172102210372)the Cooperative Project of Production,Teaching and Research in Henan Province(Grant No.18210700031)
文摘This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock mass was used for equivalent continuous seepage field analysis based on the improved node virtual flow method. Using a high CFRD as an example, the generalized equivalent continuum range was determined, and a finite element model was established based on the terrain and geological conditions, as well as structural face characteristics of the dam area. The equivalent seepage coefficients of different material zones or positions in the dam foundation were calculated with the Snow model or inverse analysis. Then, the 3 D seepage field in the dam area was calculated under the normal water storage conditions, and the corresponding water head distribution, seepage flow, seepage gradient, and seepage characteristics in the dam area were analyzed. The results show that the generalized equivalent continuum model can effectively simulate overall seepage patterns of the CFRD under complex hydraulic conditions and provide a reference for seepage analysis of similar CFRDs.
基金supported by the National Natural Science Foundation of China(Grants No.51779153,51539006,and 51509156)the Natural Science Foundation of Jiangsu Province(Grant No.BK20161121)
文摘A simplified physically-based model was developed to simulate the breaching process of the Gouhou concrete-faced rockfill dam (CFRD), which is the only breach case of a high CFRD in the world. Considering the dam height, a hydraulic method was chosen to simulate the initial scour position on the downstream slope, with the steepening of the downstream slope taken into account; a headcut erosion formula was adopted to simulate the backward erosion as well. The moment equilibrium method was utilized to calculate the ultimate length of a concrete slab under its self-weight and water loads. The calculated results of the Gouhou CFRD breach case show that the proposed model provides reasonable peak breach flow, final breach width, and failure time, with relative errors less than 15% as compared with the measured data. Sensitivity studies show that the outputs of the proposed model are more or less sensitive to different parameters. Three typical parametric models were compared with the proposed model, and the comparison demonstrates that the proposed physically-based breach model performs better and provides more detailed results than the parametric models.
基金National Key Technology R&D Program in the 12th Five Year Plan of China (No. 2011BAB10B06)Independent Innovation Foundation of Tianjin University (No. 1102119)
文摘The theory and method of system integration for the real-time monitoring of core rock-fill dam filling con- struction quality are studied in this paper. First, the importance analysis of system integration factors is carried out with the analytic hierarchy process. Then, according to the analysis result of integration factors, the conceptual model of system integration is built based on function integration, index integration, technology integration and information integration, the index structure of core rock-fill dam filling construction quality control is constructed and the method of function integration and technology integration is studied. The mathematical model of process monitoring is built according to monitoring objective, process and indexes. Research results have been applied in Nuozhadu core rock-fill dam construction management, realizing system integration through building appropriate monitoring work flow and comprehensive information platform of digital dam.
文摘An optimal allocation of earth is of great significance to reduce the project cost and duration in the construction of rock-fill dams. The earth allocation is a dynamic system affected by various time-space constraints. Based on previous studies, a new method of optimizing this dynamic system as a static one is presented. In order to build a generalized and flexible model of the problem, some man-made constraints were investigated in building the mathematic model. Linear programming and simplex method are introduced to solve the optimization problem of earth allocation. A case study in a large-scale rock-fill dam construction project is presented to demonstrate the proposed method and its successful application shows the feasibility and effectiveness of the method.
文摘This study presents earthquake performance analysis of the Torul Concrete-Faced Rockfill (CFR) Dam with two-dimensional dam-soil and dam-soil-reservoir finite element models. The Lagrangian approach was used with fluid elements to model impounded water. The interface elements were used to simulate the slippage between the concrete face slab and the rockfill. The horizontal component of the 1992 Erzincan earthquake, with a peak ground acceleration of 0.515g, was considered in time-history analysis. The Drucker-Prager model was preferred in nonlinear analysis of the concrete slab, rockfill and foundation soil. The maximum principal stresses and the maximum displacements in two opposite directions were compared by the height of the concrete slab according to linear time-history analysis to reveal the effect of reservoir water. The changes of critical displacements and principal stresses with time are also shown in this paper. According to linear and nonlinear time-history analysis, the effect of the reservoir water on the earthquake performance of the Torul CFR Dam was investigated and the possible damage situation was examined. The results show that the hydrodynamic pressure of reservoir water leads to an increase in the maximum displacements and principal stresses of the dam and reduces the earthquake performance of the dam. Although the linear time-history analysis demonstrates that the earthquake causes a momentous damage to the concrete slab of the Torul CFR Dam, the nonlinear time-history analysis shows that no evident damage occurs in either reservoir case.
文摘Based on the APDL (ANSYS Parametric Design Language) and combined with the actual project related to parameters of filling material, imported Duncan-Chang constitutive model which has been widely applied in soil mass and rock-fill in the ANSYS software. With the three-dimensional nonlinear finite element analysis by the mid-point incremental method, what have been computed are the deformation and stress analysis ofNa Ba reservoir CFRD (Concrete Face Rock-fill Dam) in filling period. The calculation results provide practical reference for the dam during construction safety filling stress and deformation analysis and real-time monitoring.
文摘This paper compares the different inversion results of three different earth rock-fill dam models with the actual leakage passages by performing isotope tracing tests and resistivity tomographic tests. The accuracy of the experimental results is evaluated, and the characteristics of these two methods are analyzed. As a result, some significant references are offered for earth rock-fill dam’s hidden defects detection. The experimental results show that the leakage and the direction of the seepage can be judged by isotope tracing tests, meanwhile, the degree of the leakage can be confirmed through the determination of the horizontal seepage velocity and the vertical seepage velocity, but it is difficult to properly determine the position of leakage passages and the range of leakage. Relatively speaking, the positions of the leakage passages can be accurately and directly displayed through resistivity tomographic tests. The experiment results show that the resistivity tomographic method is much better than isotope tracing method with regard to earth rock-fill dam’s hidden defects detection, and the resistivity tomographic method expresses much more convenience and much higher precision than isotope tracing method.
文摘The leakage occurs during operation of the dam in Liuhuanggou reservoir. It’s a threat to the safety of the people’s lives and property in downstream. In order to eliminate the hidden danger of reservoir, ensure the safety of the dam, play better the function of flood control and water storage of the reservoir etc., we apply the 3D electrical resistivity tomography detecting technology and volume rendering image processing technology, make the measurement in field, process the data and combine the field survey to find out the leakage channels inside the dam. The results show that the 3D resistivity images appear the low resistivity zone corresponding with the leakage channels. There are two main leakage channels that come from different location inside the dam. It is feasible to diagnose the leakage in earth rock-fill dam by applying 3D electrical resistivity tomography.
基金supported by the National Science Fund for Distinguished Young Scholars(Grant No.52125904)the National Natural Science Foundation of China(Grant No.51979224)the Program 2022TD-01 for Shaanxi Provincial Innovative Research Team(Grant No.2022TD-01)。
文摘Overtopping is one of the main reasons for the breaching of concrete-face sand-gravel dams(CFSGDs).In this study,a refined mathematical model was established based on the characteristics of the overtopping breaching of CFSGDs.The model characteristics were as follows:(1)Based on the Renormailzation Group(RNG)k-εturbulence theory and volume of fluid(VOF)method,the turbulent characteristics of the dam-break flow were simulated,and the erosion surface of the water and soil was tracked;(2)In consideration of the influence of the change in the sediment content on the dam-break flow,the dam material transport equation,which could reflect the characteristics of particle settlement and entrainment motion,was used to simulate the erosion process of the sand gravels;(3)Based on the bending moment balance method,a failure equation of the concrete face slab under dead weight and water load was established.The proposed model was verified through a case study on the failure of the Gouhou CFSGD.The results showed that the proposed model could well simulate the erosion mode of the special vortex flow of the CFSGD scouring the support body of the concrete face slab inward and reflect the mutual coupling relationship between the dam-break flow,sand gravels,and concrete face slabs.Compared with the measured values,the relative errors of the peak discharge,final breach average width,dam breaching duration,and maximum failure length of the face slab calculated using the proposed model were all less than 12%,thus verifying the rationality of the model.The proposed model was demonstrated to perform better and provide more detailed results than three selected parametric models and three simplified mathematical models.The study results can aid in establishing the risk level and devising early warning strategies for CFSGDs.
文摘In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries across the world is gathered with their reported settlements. The results showed that the GP model is able to estimate the dam settlement properly based on four properties, void ratio of dam’s body (e), height (H), vertical deformation modulus (Ev) and shape factor (Sc) of the dam. For verification of the model applicability, obtained results compared with other research methods such as Clements’s formula and the finite element model. The comparison showed that in all cases the GP model led to be more accurate than those of performed in literature. Also a proper compatibility between the GP model and the finite element model was perceived.
基金Project(90815024) supported by the National Natural Science Foundation of China
文摘To find the distribution patterns of dynamic amplification coefficients for dams subjected to earthquake, 3D seismic responses of concrete-faced rockfill dams with different heights and different shapes of river valley were analyzed by using the equivalent-linear model. Statistical analysis was also made to the seismic coefficient, and an empirical formula for calculating the maximum acceleration was provided. The results indicate that under the condition of the same dam height and the same base acceleration excitations, with the increase of the river valley width, the position of the maximum acceleration on the axis of the top of the dam moves from the center to the riversides symmetrically. For the narrow valleys, the maximum acceleration occurs in the middle of the axis at the top of the dam; for wide valleys the maximum acceleration appears near the riversides. The result negates the application of 2D dynamical computation for wide valleys, and shows that for the seismic response of high concrete-faced rockfill dams, the seismic coefficient along the axis should be given, except for that along the dam height. Seismic stability analysis of rockfill dams using pseudo-static method can be modified according to the formula.
基金the support from the Key Program Grant from National Natural Science Foundation of China (52039005)Grant from State Key Laboratory of Hydroscience and Engineering (2022-KY-01).
文摘Over the past few decades,one of the most significant advances in dam construction has been the inven-tion of the rock-filled concrete(RFC)dam,which is constructed by pouring high-performance self-compacting concrete(HSCC)to fill the voids in preplaced large rocks.The innovative use of large rocks in dam construction provides engineers with a material that requires less cement consumption and hydration heat while enhancing construction efficiency and environmental friendliness.However,two fundamental scientific issues related to RFC need to be addressed:namely,the pouring compactness and the effect of large rocks on the mechanical and physical properties of RFC.This article provides a timely review of fundamental research and innovations in the design,construction,and quality control of RFCdams.Prospects for next-generation concrete dams are discussed from the perspectives of envi-ronmental friendliness,intrinsic safety,and labor savings.
基金supported by the National Natural Science Foundation of China(Grant Nos.51579086,51479054,51379068&51139001)Jiangsu Natural Science Foundation(Grant No.BK20140039)the Priority Academic Program Development of Jiangsu Higher Education Institutions(Grant No.YS11001)
文摘Considering the complex nonlinear relationship between the material parameters of a concrete faced rock-fill dam(CFRD) and its displacements, the harmony search(HS) algorithm is used to optimize the back propagation neural network(BPNN), and the HS-BPNN algorithm is formed and applied for the inversion analysis of the parameters of rock-fill materials. The sensitivity of the parameters in the Duncan and Chang's E-B model is analyzed using the orthogonal test design. The case study shows that the parameters φ0, K, Rf, and Kb are sensitive to the deformation of the rock-fill dam and the inversion analysis for these parameters is performed by the HS-BPNN algorithm. Compared with the traditional BPNN, the HS-BPNN algorithm exhibits the advantages of high convergence precision, fast convergence rate, and strong stability.
文摘This paper summarizes the main technical points related to 100 m-height-scale concrete faced rock-fill dams and analyzes the main problems and their causes occurring during construction of 200 m-height-scale concrete faced rock-fill dams. This paper has raised the key technical problems which need to study for construction of 300 m-height-scale concrete faced rock-fill dams based on the main experiences on the extra-high concrete faced rock-fill dams built after the year of 2000.
文摘This paper demonstrates the difficulties in determining the relevant material parameters for a valuation of the deformation behavior of the up-and downstream dam shell by means of an embankment dam of medium height.Laboratory as well as field tests on solid rock-fill material were performed before the beginning of construction.During the construction the properties of the available rock-fill changed from solid to soft materials.This gave rise to the necessity of adjusting the dam design of the downstream dam shoulder.Several times higher dam settlements as well as significant differential settlements between the up-and downstream dam shell were observed during construction and operation.Apart from this situation,the dam has been operated for nearly 20 years and the behavior of the water barrier has been very good.
文摘For an overtopped rock-fill dam, the flow field consists of open flow and seepage flow, which have different properties. The overflow is characterized as variable flow and the seepage flow is not the Darcy flow, but non-Darcy flow. For the analysis of the flow characters, using the energy theory and the FEM, the author presents a method to calculate the combined flow (i. e. flow over and through a dam ) in this paper. The experimental work shows that, the calculated results agree well with the experimental ones.Therefore, it is not only possible, but also feasible to solve this problem with the presented method.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.50979046)the National Basic Research Program(973 Program,No.2007CB714108).These supports are gratefully acknowledged.
文摘Reasonable seismic response analysis of a high rockfill dam is of great engineering significance in guiding its design and ensuring its seismic safety during operation,especially of a concrete-faced rockfill dam(CFRD)on overburden layers.The three-dimensional seismic behavior of the Miaojiaba CFRD is simulated and analyzed by the finite element method(FEM).The results indicate that:1)the amplification coefficient along the dam axis gradually increases with the altitude,and reaches maximum at the dam crest;2)the vertical residual deformation mainly exhibits downwards and reaches maximum near the dam crest;3)the earthquake significantly aggravates the deformation of peripheral joints;4)the impounding condition and overburden characteristics have great effects on the dam's seismic response.
文摘On May 12, 2008, a major earthquake measured 8 on the Richter scale jolted Wenchuan County in Si- chuan Province, China with the epicentral intensity of XI degrees. Zipingpu Dam is located 17.17 km from the epicenter and the influence intensity at the damsite reached IX―X degrees. It is the first time in the world for such a high concrete-faced rockfill dam (CFRD) in China to experience such a strong earthquake occurring in such a short distance. Due to its location of special importance to the down- stream areas, the safety state and damaging condition of the Zipingpu Dam has attracted great atten- tions from various circles. Based on site investigation of the damages to the Zipingpu Dam and com- parison analysis of the observation data obtained before and after the earthquake, the paper makes a comprehensive assessment of the key technical issues relevant to this high CFRD, including its safety state and the high slope stability after the earthquake.
基金This study was financially supported by the National Natural Science Foundation of China(Grant Nos.51978607 and 51878601).
文摘In this study,sprayable strain-hardening fiber-reinforced cementitious composites(FRCC)were applied to strengthen the concrete slabs in a concrete-face rockfill dam(CFRD)for the first time.Experimental,numerical,and analytical investigations were carried out to understand the flexural properties of FRCC-layered concrete slabs.It was found that the FRCC layer improved the flexural performance of concrete slabs significantly.The cracking and ultimate loads of a concrete slab with an 80 mm FRCC layer were 132%and 69%higher than those of the unstrengthened concrete slab,respectively.At the maximum crack width of 0.2 mm,the deflection of the 80-mm FRCC strengthened concrete slab was 144%higher than that of the unstrengthened concrete slab.In addition,a FE model and a simplified analytical method were developed for the design and analysis of FRCC-layered concrete slabs.Finally,the test result of FRCC leaching solution indicated that the quality of the water surrounding FRCC satisfied the standard for drinking water.The findings of this study indicate that the sprayable strain-hardening FRCC has a good potential for strengthening hydraulic structures such as CFRDs.