期刊文献+
共找到266篇文章
< 1 2 14 >
每页显示 20 50 100
Conditional Generative Adversarial Network Enabled Localized Stress Recovery of Periodic Composites
1
作者 Chengkan Xu Xiaofei Wang +2 位作者 Yixuan Li Guannan Wang He Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期957-974,共18页
Structural damage in heterogeneousmaterials typically originates frommicrostructures where stress concentration occurs.Therefore,evaluating the magnitude and location of localized stress distributions within microstru... Structural damage in heterogeneousmaterials typically originates frommicrostructures where stress concentration occurs.Therefore,evaluating the magnitude and location of localized stress distributions within microstructures under external loading is crucial.Repeating unit cells(RUCs)are commonly used to represent microstructural details and homogenize the effective response of composites.This work develops a machine learning-based micromechanics tool to accurately predict the stress distributions of extracted RUCs.The locally exact homogenization theory efficiently generates the microstructural stresses of RUCs with a wide range of parameters,including volume fraction,fiber/matrix property ratio,fiber shapes,and loading direction.Subsequently,the conditional generative adversarial network(cGAN)is employed and constructed as a surrogate model to establish the statistical correlation between these parameters and the corresponding localized stresses.The stresses predicted by cGAN are validated against the remaining true data not used for training,showing good agreement.This work demonstrates that the cGAN-based micromechanics tool effectively captures the local responses of composite RUCs.It can be used for predicting potential crack initiations starting from microstructures and evaluating the effective behavior of periodic composites. 展开更多
关键词 Periodic composites localized stress recovery conditional generative adversarial network
下载PDF
Conveyor-Belt Detection of Conditional Deep Convolutional Generative Adversarial Network 被引量:2
2
作者 Xiaoli Hao Xiaojuan Meng +2 位作者 Yueqin Zhang JinDong Xue Jinyue Xia 《Computers, Materials & Continua》 SCIE EI 2021年第11期2671-2685,共15页
In underground mining,the belt is a critical component,as its state directly affects the safe and stable operation of the conveyor.Most of the existing non-contact detection methods based on machine vision can only de... In underground mining,the belt is a critical component,as its state directly affects the safe and stable operation of the conveyor.Most of the existing non-contact detection methods based on machine vision can only detect a single type of damage and they require pre-processing operations.This tends to cause a large amount of calculation and low detection precision.To solve these problems,in the work described in this paper a belt tear detection method based on a multi-class conditional deep convolutional generative adversarial network(CDCGAN)was designed.In the traditional DCGAN,the image generated by the generator has a certain degree of randomness.Here,a small number of labeled belt images are taken as conditions and added them to the generator and discriminator,so the generator can generate images with the characteristics of belt damage under the aforementioned conditions.Moreover,because the discriminator cannot identify multiple types of damage,the multi-class softmax function is used as the output function of the discriminator to output a vector of class probabilities,and it can accurately classify cracks,scratches,and tears.To avoid the features learned incompletely,skiplayer connection is adopted in the generator and discriminator.This not only can minimize the loss of features,but also improves the convergence speed.Compared with other algorithms,experimental results show that the loss value of the generator and discriminator is the least.Moreover,its convergence speed is faster,and the mean average precision of the proposed algorithm is up to 96.2%,which is at least 6%higher than that of other algorithms. 展开更多
关键词 Multi-class detection conditional deep convolution generative adversarial network conveyor belt tear skip-layer connection
下载PDF
融合迁移学习与CGAN的风电集群功率超短期预测
3
作者 周军 王渴心 王岩 《电力系统及其自动化学报》 CSCD 北大核心 2024年第5期9-18,共10页
针对可再生能源不确定性导致电力系统消纳能力不足的问题,提出一种基于条件生成对抗网络与迁移学习融合的风电集群功率超短期预测方法。首先,分析了风电集群功率预测样本模式的不均衡性以及导致的神经网络预测误差偏移现象;其次,构建了... 针对可再生能源不确定性导致电力系统消纳能力不足的问题,提出一种基于条件生成对抗网络与迁移学习融合的风电集群功率超短期预测方法。首先,分析了风电集群功率预测样本模式的不均衡性以及导致的神经网络预测误差偏移现象;其次,构建了条件生成对抗网络修复不均衡问题;最后,采用迁移学习结合时间卷积网络构建了风电集群功率超短期预测模型。测试结果表明,所提方法能够显著提高风电集群功率超短期预测精度。 展开更多
关键词 风电预测 风电集群 条件生成对抗网络 迁移学习 时间卷积网络
下载PDF
融合残差SENet的毫米波大规模MIMO信道估计
4
作者 刘庆利 杨国强 张振亚 《电讯技术》 北大核心 2024年第4期512-519,共8页
在户外光线追踪场景下,针对毫米波大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)系统受户外环境噪声干扰导致估计精度低的问题,提出了一种融合残差挤压激励网络(Squeeze-and-Excitation Network,SENet)的条件生成对抗网络... 在户外光线追踪场景下,针对毫米波大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)系统受户外环境噪声干扰导致估计精度低的问题,提出了一种融合残差挤压激励网络(Squeeze-and-Excitation Network,SENet)的条件生成对抗网络的信道估计方法。该方法采用条件生成对抗网络将低分辨率接收信号重建为高分辨率的原始信号完成信道估计,同时在生成器网络中引入SENet网络模块来抑制户外场景下显著性噪声干扰,提高估计精度;最后将残差网络中的残差块添加到SENet的放缩操作后,提高条件生成对抗网络的收敛速度。仿真结果表明,相较于正交匹配追踪算法、卷积神经网络、去噪卷积神经网络和条件生成对抗网络算法,所提方法在户外噪声环境下估计精度平均提高了约2.2 dB,且在高噪声强度下估计精度的提高更为显著。 展开更多
关键词 毫米波大规模MIMO 信道估计 条件生成对抗网络(cgan) 残差挤压激励网络(SEnet)
下载PDF
Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks 被引量:18
5
作者 Tuan-Feng Zhang Peter Tilke +3 位作者 Emilien Dupont Ling-Chen Zhu Lin Liang William Bailey 《Petroleum Science》 SCIE CAS CSCD 2019年第3期541-549,共9页
This paper proposes a novel approach for generating 3-dimensional complex geological facies models based on deep generative models.It can reproduce a wide range of conceptual geological models while possessing the fle... This paper proposes a novel approach for generating 3-dimensional complex geological facies models based on deep generative models.It can reproduce a wide range of conceptual geological models while possessing the flexibility necessary to honor constraints such as well data.Compared with existing geostatistics-based modeling methods,our approach produces realistic subsurface facies architecture in 3D using a state-of-the-art deep learning method called generative adversarial networks(GANs).GANs couple a generator with a discriminator,and each uses a deep convolutional neural network.The networks are trained in an adversarial manner until the generator can create "fake" images that the discriminator cannot distinguish from "real" images.We extend the original GAN approach to 3D geological modeling at the reservoir scale.The GANs are trained using a library of 3D facies models.Once the GANs have been trained,they can generate a variety of geologically realistic facies models constrained by well data interpretations.This geomodelling approach using GANs has been tested on models of both complex fluvial depositional systems and carbonate reservoirs that exhibit progradational and aggradational trends.The results demonstrate that this deep learning-driven modeling approach can capture more realistic facies architectures and associations than existing geostatistical modeling methods,which often fail to reproduce heterogeneous nonstationary sedimentary facies with apparent depositional trend. 展开更多
关键词 GEOLOGICAL FACIES Geomodeling Data conditioning generative adversarial netWORKS
下载PDF
基于CCGAN和ResNet34的滚动轴承故障诊断方法 被引量:2
6
作者 骆耀谱 王衍学 李孟 《机电工程》 CAS 北大核心 2023年第6期852-859,共8页
在实际的工业过程中,由于滚动轴承故障数据的小样本或样本分布不平衡问题很常见,导致许多算法难以准确地识别不同故障。针对这一问题,提出了一种基于条件卷积生成对抗网络(CCGAN)和ResNet34的深度神经网络故障诊断方法。首先,采集了滚... 在实际的工业过程中,由于滚动轴承故障数据的小样本或样本分布不平衡问题很常见,导致许多算法难以准确地识别不同故障。针对这一问题,提出了一种基于条件卷积生成对抗网络(CCGAN)和ResNet34的深度神经网络故障诊断方法。首先,采集了滚动轴承振动信号数据,并将振动信号转换为灰度图像,并增强了其数据特征;然后,采用CCGAN网络学习了原始小样本数据的特征,扩展了小样本不平衡数据集;最后,在滚动轴承振动信号的数据扩充和特征增强的基础上,采用ResNet34深度网络进行了一维振动信号的小样本不平衡故障诊断和分类。研究结果表明:随着小样本不平衡数据集逐步扩展到多维平衡数据集,该方法在不同数据集中故障诊断的准确性均得到了有效提高,在分类精度上达到了99.5%;诊断证明了其特征提取能力优于典型的机器学习和深度学习网络,从而验证了该方法在小样本不平衡故障诊断中的优势。 展开更多
关键词 小样本故障诊断 数据扩充 深度学习 生成对抗网络 残差结构 条件卷积生成对抗网络 改进的特征提取并增强方法
下载PDF
基于改进CGAN的海冰SAR-to-Optical影像转换
7
作者 刘翔 王瑞富 +1 位作者 孙光 李媛 《海洋通报》 CAS CSCD 北大核心 2024年第4期452-462,共11页
遥感海冰监测是当前研究热点,通过条件生成对抗网络(CGAN)将海冰SAR影像转换成光学影像,可获得全天时全天候且形象直观的监测数据,但该方法得到的转换结果存在影像模糊、纹理弱化和颜色失真等问题。本文针对以上问题设计了改进的CGAN网... 遥感海冰监测是当前研究热点,通过条件生成对抗网络(CGAN)将海冰SAR影像转换成光学影像,可获得全天时全天候且形象直观的监测数据,但该方法得到的转换结果存在影像模糊、纹理弱化和颜色失真等问题。本文针对以上问题设计了改进的CGAN网络,综合当前的改进方式,新模型在网络结构上加入了空洞空间金字塔模块并设计了加入交叉特征融合模块的跳跃连接,使用结构相似性和L1范数联合损失函数。本文选取东波弗特海地区5景Sentinel-1影像和7景Sentinel-2影像开展实验,实验结果表明,改进CGAN转换的影像具有更好的视觉效果,峰值信噪比(PSNR)提高了3.4 dB,结构相似性(SSIM)提高了0.11,均方根误差(RMSE)降低了13%,并且经过转换后的影像比SAR影像海冰分类结果准确度提高了7.33%。 展开更多
关键词 海冰监测 条件生成对抗网络 SAR 光学影像 影像转换
下载PDF
A Generative Adversarial Nets Method for Monitoring Data Generation on Aircraft Engines 被引量:1
8
作者 FU Qiang WANG Huawei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第4期609-616,共8页
A sufficient sample size of monitoring data becomes a key factor for describing aircraft engines state.Generative adversarial nets(GAN)can be used to expand the sample size based on the existing state monitoring infor... A sufficient sample size of monitoring data becomes a key factor for describing aircraft engines state.Generative adversarial nets(GAN)can be used to expand the sample size based on the existing state monitoring information.In the paper,a GAN model is introduced to design an algorithm for generating the monitoring data of aircraft engines.This feasibility of the method is illustrated by an example.The experimental results demonstrate that the probability density distribution of generated data after a large number of network training iterations is consistent with the probability density distribution of monitoring data.The proposed method also effectively demonstrates the generated monitoring data of aircraft engine are in a reasonable range.The method can effectively solve the problem of inaccurate performance degradation evaluation caused by the small amount of aero?engine condition monitoring data. 展开更多
关键词 generative adversarial nets(GAN) aircraft engine condition monitoring monitoring data
下载PDF
太赫兹MIMO系统中基于SRCGAN的空时频信道估计方案
9
作者 蒋奕采 季薇 《移动通信》 2024年第6期97-104,114,共9页
为了能有效利用THz-MIMO系统的多维信道特性,提出一种基于SRCGAN的THz-MIMO系统信道估计方案。在该方案中,由预估计模块获得的初始空时域信道响应矩阵被视作一张二维的低分辨率图像,利用SRCGAN网络提取太赫兹信道的空时特性进行空时域... 为了能有效利用THz-MIMO系统的多维信道特性,提出一种基于SRCGAN的THz-MIMO系统信道估计方案。在该方案中,由预估计模块获得的初始空时域信道响应矩阵被视作一张二维的低分辨率图像,利用SRCGAN网络提取太赫兹信道的空时特性进行空时域信道补全获得完整的信道信息,然后相邻子载波之间的频率相关性作为SRGAN提供的条件信息提升信道估计精度。为了增强SRCGAN网络对时变信道预测的鲁棒性,在线上估计阶段,基于最大均方误差准则采用梯度下降算法对输入的预估计信道信息矩阵进行迭代更新。仿真结果证明了基于SRCGAN的空时频信道估计方案性能的优越性,以及利用信道“空时频”的相关性提升估计精度的有效性。 展开更多
关键词 THz-MIMO 信道估计 空时频域 超分辨率 条件生成对抗网络
下载PDF
Enhancing Pneumonia Detection in Pediatric Chest X-Rays Using CGAN-Augmented Datasets and Lightweight Deep Transfer Learning Models
10
作者 Coulibaly Mohamed Ronald Waweru Mwangi John M. Kihoro 《Journal of Data Analysis and Information Processing》 2024年第1期1-23,共23页
Pneumonia ranks as a leading cause of mortality, particularly in children aged five and under. Detecting this disease typically requires radiologists to examine chest X-rays and report their findings to physicians, a ... Pneumonia ranks as a leading cause of mortality, particularly in children aged five and under. Detecting this disease typically requires radiologists to examine chest X-rays and report their findings to physicians, a task susceptible to human error. The application of Deep Transfer Learning (DTL) for the identification of pneumonia through chest X-rays is hindered by a shortage of available images, which has led to less than optimal DTL performance and issues with overfitting. Overfitting is characterized by a model’s learning that is too closely fitted to the training data, reducing its effectiveness on unseen data. The problem of overfitting is especially prevalent in medical image processing due to the high costs and extensive time required for image annotation, as well as the challenge of collecting substantial datasets that also respect patient privacy concerning infectious diseases such as pneumonia. To mitigate these challenges, this paper introduces the use of conditional generative adversarial networks (CGAN) to enrich the pneumonia dataset with 2690 synthesized X-ray images of the minority class, aiming to even out the dataset distribution for improved diagnostic performance. Subsequently, we applied four modified lightweight deep transfer learning models such as Xception, MobileNetV2, MobileNet, and EfficientNetB0. These models have been fine-tuned and evaluated, demonstrating remarkable detection accuracies of 99.26%, 98.23%, 97.06%, and 94.55%, respectively, across fifty epochs. The experimental results validate that the models we have proposed achieve high detection accuracy rates, with the best model reaching up to 99.26% effectiveness, outperforming other models in the diagnosis of pneumonia from X-ray images. 展开更多
关键词 Pneumonia Detection Pediatric Radiology cgan (conditional generative adversarial networks) Deep Transfer Learning Medical Image Analysis
下载PDF
基于CGAN的抽油机电参数反演示功图研究
11
作者 李翔宇 邓昱航 袁春华 《沈阳理工大学学报》 CAS 2024年第3期1-9,共9页
示功图的精准测量在有杆抽油系统故障诊断中非常重要,针对载荷传感器直接测量法维护成本高、稳定性差,电参数间接测量法精度低、应用性不强的问题,提出一种基于条件生成对抗网络(CGAN)的电参数反演示功图混合模型。首先建立将电参数和... 示功图的精准测量在有杆抽油系统故障诊断中非常重要,针对载荷传感器直接测量法维护成本高、稳定性差,电参数间接测量法精度低、应用性不强的问题,提出一种基于条件生成对抗网络(CGAN)的电参数反演示功图混合模型。首先建立将电参数和机构参数转化光杆位移和负载的机理模型,生成粗糙的示功图样本数据;然后利用CGAN在图像转换领域的应用,建立粗糙示功图数据细化器,实现粗糙示功图与实测示功图之间的图像转化,使粗糙示功图与实测示功图更加相似;此外,为了使CGAN能更好地提取示功图轮廓,在生成器中加入自注意力机制进行改进。通过现场实测的电参数和示功图历史数据进行验证,结果表明该方法对比纯机理模型反演示功图的精度有显著提高。 展开更多
关键词 示功图测量 电参反演 条件生成对抗网络 图像转化
下载PDF
基于cGAN的刀具磨损状态监测数据集增强方法
12
作者 杨巍 牛蒙蒙 +3 位作者 白玉珍 单春海 卢伟国 吕世旭 《制造技术与机床》 北大核心 2023年第6期55-60,共6页
在刀具磨损过程中,通常采集的正常磨损阶段的样本数据比初始磨损阶段和急剧磨损阶段的样本数据量多,这导致刀具磨损状态数据集不平衡,从而使深度学习网络模型对刀具磨损状态预测准确性降低。针对问题,文章提出一种基于cGAN的刀具磨损状... 在刀具磨损过程中,通常采集的正常磨损阶段的样本数据比初始磨损阶段和急剧磨损阶段的样本数据量多,这导致刀具磨损状态数据集不平衡,从而使深度学习网络模型对刀具磨损状态预测准确性降低。针对问题,文章提出一种基于cGAN的刀具磨损状态监测数据集增强方法。在cGAN中添加了类别条件信息,有利于生成器更好的捕捉刀具磨损样本的数据分布特点,从而生成和真实刀具磨损样本分布相似的样本。采集铣削加工过程中的振动信号,将振动信号转换成频谱数据输入到c GAN中,cGAN通过生成器和鉴别器之间的对抗训练,学习数据分布特点,生成刀具磨损状态样本数据。将增强的数据集输入到深度学习网络模型中进行分类,测试生成数据的可用性。实验结果显示,由增强的刀具磨损状态数据集训练深度学习网络模型,可以有效提高模型对刀具磨损状态监测的准确性,其预测精度达到98.1%。 展开更多
关键词 条件生成对抗网络 刀具磨损 数据增强 深度学习
下载PDF
Adversarial Training-Aided Time-Varying Channel Prediction for TDD/FDD Systems 被引量:2
13
作者 Zhen Zhang Yuxiang Zhang +1 位作者 Jianhua Zhang Feifei Gao 《China Communications》 SCIE CSCD 2023年第6期100-115,共16页
In this paper, a time-varying channel prediction method based on conditional generative adversarial network(CPcGAN) is proposed for time division duplexing/frequency division duplexing(TDD/FDD) systems. CPc GAN utiliz... In this paper, a time-varying channel prediction method based on conditional generative adversarial network(CPcGAN) is proposed for time division duplexing/frequency division duplexing(TDD/FDD) systems. CPc GAN utilizes a discriminator to calculate the divergence between the predicted downlink channel state information(CSI) and the real sample distributions under a conditional constraint that is previous uplink CSI. The generator of CPcGAN learns the function relationship between the conditional constraint and the predicted downlink CSI and reduces the divergence between predicted CSI and real CSI.The capability of CPcGAN fitting data distribution can capture the time-varying and multipath characteristics of the channel well. Considering the propagation characteristics of real channel, we further develop a channel prediction error indicator to determine whether the generator reaches the best state. Simulations show that the CPcGAN can obtain higher prediction accuracy and lower system bit error rate than the existing methods under the same user speeds. 展开更多
关键词 channel prediction time-varying channel conditional generative adversarial network multipath channel deep learning
下载PDF
基于VAE-CGAN的牦牛等级评定算法
14
作者 李丹 张玉安 +3 位作者 何杰 陈占琦 宋维芳 宋仁德 《计算机系统应用》 2023年第1期249-256,共8页
在牦牛高效养殖过程中,牦牛等级评定是牦牛育种工作中的重要环节.为了在牦牛等级评定研究中,降低数据集分布不平衡对牦牛等级预测结果的影响,提出一种基于改进条件生成对抗网络模型的牦牛等级评定模型VAE-CGAN.首先,为获取高质量生成样... 在牦牛高效养殖过程中,牦牛等级评定是牦牛育种工作中的重要环节.为了在牦牛等级评定研究中,降低数据集分布不平衡对牦牛等级预测结果的影响,提出一种基于改进条件生成对抗网络模型的牦牛等级评定模型VAE-CGAN.首先,为获取高质量生成样本,模型通过引入变分自编码器取代条件生成对抗网络输入中的随机噪声,降低了随机变量带来的不确定性.此外,模型将牦牛标签作为条件信息输入到生成对抗模型中来获取指定类别的生成样本,生成样本及训练样本则会被用于训练深度神经网络分类器.实验结果显示,模型整体预测准确率达到了97.9%.而且与生成对抗网络相比较,在数量较少的特级牦牛等级预测上的精准率、召回率和F1值分别提升了16.7%、16.6%和19.4%.实验结果表明该模型可以实现高精准度和低误分类率的牦牛等级分类. 展开更多
关键词 牦牛高效养殖 牦牛等级预测 变分自编码器 条件生成对抗网络 生成样本 深度学习 数据增强
下载PDF
一种基于改进CGAN的不平衡数据集成分类算法
15
作者 刘宁 朱波 +1 位作者 荆晓娜 阴艳超 《小型微型计算机系统》 CSCD 北大核心 2023年第9期1918-1924,共7页
CGAN能学习到数据的分布特性并生成符合原始数据分布的新样本,将其作为过采样方法可以提升不平衡数据的分类性能.然而,当少数类样本规模较小时CGAN不能充分学习其分布特征,导致生成的样本质量欠佳.为此,本文提出一种基于改进CGAN的不平... CGAN能学习到数据的分布特性并生成符合原始数据分布的新样本,将其作为过采样方法可以提升不平衡数据的分类性能.然而,当少数类样本规模较小时CGAN不能充分学习其分布特征,导致生成的样本质量欠佳.为此,本文提出一种基于改进CGAN的不平衡数据集成分类算法.首先采用SMOTEENN方法快速生成少数类样本并使其达到一定规模,训练出能充分学习少数类样本分布特性的CGAN模型,然后重新生成符合原始数据分布的少数类样本以构建平衡数据集.最后以CART决策树为基分类器,通过对Adaboost方法进行改进并用其训练所构建的平衡数据集,得到最终分类模型.选择F1值、AUC和G-mean作为分类评价指标,在8组公开数据集上的实验结果表明,所提方法可以显著提高不平衡数据的分类精度. 展开更多
关键词 不平衡数据 条件生成对抗网络 过采样 ADABOOST 集成学习
下载PDF
基于条件生成式对抗网络和AlexNet-BiLSTM模型的变电设备缺陷检测 被引量:3
16
作者 李艳丰 刘保辉 +1 位作者 马庆丰 丁柱卫 《东北电力技术》 2023年第7期7-14,共8页
针对巡检机器人拍摄变电设备图像含噪严重、图像模糊和分辨率低影响设备缺陷检测的问题,提出一种基于条件生成式对抗网络和AlexNet-BiLSTM的变电设备缺陷检测方法,实现变电设备缺陷定位与辨识。首先,通过条件生成式对抗网络将模糊图像... 针对巡检机器人拍摄变电设备图像含噪严重、图像模糊和分辨率低影响设备缺陷检测的问题,提出一种基于条件生成式对抗网络和AlexNet-BiLSTM的变电设备缺陷检测方法,实现变电设备缺陷定位与辨识。首先,通过条件生成式对抗网络将模糊图像转换成清晰图像;其次,为了避免大量超参数的设置,提高网络的训练速度,引入迁移学习思想,采用变电设备图像训练预训练的AlexNet网络,通过AlexNet网络提取图像的高维特征向量,利用双向长短时记忆网络(bi-directional long short-term memory, BiLSTM)对提取的特征向量进行分类;最后,在R-CNN框架下完成变电设备缺陷的标注和辨识。试验结果表明,所提方法复原的图像主观视觉效果良好,客观评价指标高,提高了变电设备缺陷检测准确率。 展开更多
关键词 条件生成式对抗网络 Alexnet网络 长短时记忆网络 变电设备 缺陷检测
下载PDF
基于改进条件生成对抗网络的可控场景生成方法 被引量:1
17
作者 张帅 刘文霞 +3 位作者 万海洋 吕笑影 Nawaraj Kumar Mahato 鲁宇 《电力自动化设备》 EI CSCD 北大核心 2024年第6期9-17,共9页
可再生能源发电具有较强的随机性和波动性,为实现高效可靠的场景建模,提出一种基于改进条件生成对抗网络的可控场景生成方法。提出基于条件生成对抗网络的场景生成框架,结合Transformer的全局注意力机制以及常规卷积和深度可分离卷积的... 可再生能源发电具有较强的随机性和波动性,为实现高效可靠的场景建模,提出一种基于改进条件生成对抗网络的可控场景生成方法。提出基于条件生成对抗网络的场景生成框架,结合Transformer的全局注意力机制以及常规卷积和深度可分离卷积的局部泛化机制,设计适用于提取可再生能源发电不同维度特征的网络结构;利用条件生成对抗网络模型建立低维气象特征隐空间和高维可再生能源发电数据之间的映射关系,提出一种可控场景生成方法,并建立随机场景生成、场景约减、极端场景生成和连续日场景生成4种生成策略。基于实际光伏、风电数据和气象数据的仿真结果表明,所提模型与方法能够有效学习可再生能源发电的随机性、时序性、波动性及空间相关性,实现对不同策略下场景的可控生成。 展开更多
关键词 场景生成 条件生成对抗网络 特征提取 配电网 可控生成
下载PDF
面向城区的基于图去噪的小区级RSRP估计方法
18
作者 郑毅 廖存燚 +2 位作者 张天倩 王骥 刘守印 《计算机应用》 CSCD 北大核心 2024年第3期855-862,共8页
移动通信系统网络的规划、部署和优化都不同程度依赖于参考信号接收功率(RSRP)估计的准确性。传统上,基站覆盖小区内某信号接收点的RSRP可由对应的无线传播模型估计。在城市环境中,不同小区的无线传播模型需要使用大量RSRP实测数据校正... 移动通信系统网络的规划、部署和优化都不同程度依赖于参考信号接收功率(RSRP)估计的准确性。传统上,基站覆盖小区内某信号接收点的RSRP可由对应的无线传播模型估计。在城市环境中,不同小区的无线传播模型需要使用大量RSRP实测数据校正。由于不同小区环境存在差异,经过校正后的模型只适用于对应小区,且小区内的RSRP估计精度低。针对上述问题,将RSRP估计问题转化为图去噪问题,并通过图像处理与深度学习技术得到小区级无线传播模型,不仅能实现小区整体的RSRP估计,且能适用于相似环境小区。首先,通过随机森林回归器逐点预测每个接收点的RSRP,得到整个小区的RSRP估计图;然后,将RSRP估计图和实测RSRP分布图之间的损失视为RSRP噪声图,提出基于条件生成对抗网络(CGAN)的图去噪RSRP估计方法,通过电子环境地图反映小区的环境信息,有效地降低不同小区的RSRP。实验结果表明,在无实测数据的跨小区RSRP预测场景下,所提方法预测RSRP的均方根误差(RMSE)为6.77 dBm,相较于基于卷积神经网络的RSRP估计方法EFsNet下降2.55 dBm;在同小区RSRP预测场景下,相较于EFsNet,模型参数量减小80.3%。 展开更多
关键词 条件生成对抗网络 机器学习 参考信号接收功率 无线传播模型 图去噪
下载PDF
基于条件生成对抗网络的无线传感网络多节点失效修复研究
19
作者 王暾 赵晓丽 +1 位作者 何苑 郝梦岩 《传感技术学报》 CAS CSCD 北大核心 2024年第4期716-722,共7页
当前主流的传感节点失效修复主要通过纠删码完成,修复后节点具有更高的空间利用率,但无法有效提升网络寿命。为此,提出基于条件生成对抗网络的无线传感网络多节点数据重构方法,完成失效修复。感知无线传感网络节点,对失效节点展开裁决,... 当前主流的传感节点失效修复主要通过纠删码完成,修复后节点具有更高的空间利用率,但无法有效提升网络寿命。为此,提出基于条件生成对抗网络的无线传感网络多节点数据重构方法,完成失效修复。感知无线传感网络节点,对失效节点展开裁决,确定失效节点位置,并重构节点内数据;将获取的失效节点用于条件生成对抗网络(CGAN)框架中生成器与节点替换网络的训练,通过训练好的生成器,以失效节点为条件,生成未失效节点;为提升修复性能,使用粒子群算法寻优节点替换网络参数,完成节点重构数据置换,实现失效节点的有效修复。结果表明:利用所提方法进行修复时,能耗最高仅为17 J,剩余寿命最低可达到300 h,连通度最高可达到99.2%,具有较好的修复效果。 展开更多
关键词 无线传感网络 失效节点修复 条件生成对抗网络 节点失效判决 节点数据重构
下载PDF
变工况下动态卷积域对抗图神经网络故障诊断
20
作者 王桐 王晨程 +2 位作者 邰宇 欧阳敏 陈立伟 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第7期1406-1414,共9页
针对基于无监督域自适应故障诊断方法忽略了域间数据结构信息、传统域对齐平均最大差异法全局泛化能力差等问题,本文提出一种基于无监督域自适应理论的动态卷积域对抗图神经网络故障诊断模型,分别通过对数据的类别标签、域标签和数据结... 针对基于无监督域自适应故障诊断方法忽略了域间数据结构信息、传统域对齐平均最大差异法全局泛化能力差等问题,本文提出一种基于无监督域自适应理论的动态卷积域对抗图神经网络故障诊断模型,分别通过对数据的类别标签、域标签和数据结构信息进行建模。通过分类器和域鉴别器分别建模类别标签和域标签,通过图神经网络将数据结构信息嵌入到实例图节点中,利用高斯Wasserstein距离来度量不同领域的实例图之间的差异。本文对比了不同工况下共14种迁移任务在各模型下故障识别的准确率。实验结果表明:基于动态卷积的域对抗图神经网络模型在变工况下的故障诊断效果均优于其他对比模型,且模型性能稳定。 展开更多
关键词 无监督域自适应 动态卷积 域对抗 图神经网络 图生成 高斯Wasserstein距离 故障诊断 变工况
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部