In this paper we consider general coupled mean-field reflected forward-backward stochastic differential equations(FBSDEs),whose coefficients not only depend on the solution but also on the law of the solution.The firs...In this paper we consider general coupled mean-field reflected forward-backward stochastic differential equations(FBSDEs),whose coefficients not only depend on the solution but also on the law of the solution.The first part of the paper is devoted to the existence and the uniqueness of solutions for such general mean-field reflected backward stochastic differential equations(BSDEs)under Lipschitz conditions,and for the one-dimensional case a comparison theorem is studied.With the help of this comparison result,we prove the existence of the solution for our mean-field reflected forward-backward stochastic differential equation under continuity assumptions.It should be mentioned that,under appropriate assumptions,we prove the uniqueness of this solution as well as that of a comparison theorem for mean-field reflected FBSDEs in a non-trivial manner.展开更多
This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information avail...This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information available to the controller is possibly less than the overall information. All the system coefficients and the objective performance functional are allowed to be random, possibly non-Markovian. Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explicitly expressed.展开更多
One existence integral condition was obtained for the adapted solution of the general backward stochastic differential equations(BSDEs). Then by solving the integral constraint condition, and using a limit procedure, ...One existence integral condition was obtained for the adapted solution of the general backward stochastic differential equations(BSDEs). Then by solving the integral constraint condition, and using a limit procedure, a new approach method is proposed and the existence of the solution was proved for the BSDEs if the diffusion coefficients satisfy the locally Lipschitz condition. In the special case the solution was a Brownian bridge. The uniqueness is also considered in the meaning of "F0-integrable equivalent class" . The new approach method would give us an efficient way to control the main object instead of the "noise".展开更多
This paper is concerned with a class of uncertain backward stochastic differential equations (UBSDEs) driven by both an m-dimensional Brownian motion and a d-dimensional canonical process with uniform Lipschitzian c...This paper is concerned with a class of uncertain backward stochastic differential equations (UBSDEs) driven by both an m-dimensional Brownian motion and a d-dimensional canonical process with uniform Lipschitzian coefficients. Such equations can be useful in mod- elling hybrid systems, where the phenomena are simultaneously subjected to two kinds of un- certainties: randomness and uncertainty. The solutions of UBSDEs are the uncertain stochastic processes. Thus, the existence and uniqueness of solutions to UBSDEs with Lipschitzian coeffi- cients are proved.展开更多
In this paper, we present a local Lipchitz condition for the local existence of solution to a class of stochastic differential equations with finite delay in a real separable Hilbert space which has the following form:
For Duffle-Epstein type Backward Stochastic Differential Equations, the comparison theorem is proved. Based on the comparison theorem, by monotone iterative technique, the existence of the minimal and maximal solution...For Duffle-Epstein type Backward Stochastic Differential Equations, the comparison theorem is proved. Based on the comparison theorem, by monotone iterative technique, the existence of the minimal and maximal solutions of the equations are proved.展开更多
In this paper, a class of non-autonomous functional integro-differential stochastic equations in a real separable Hilbert space is studied. When the operators A(t) satisfy Acquistapace-Terreni conditions, and with s...In this paper, a class of non-autonomous functional integro-differential stochastic equations in a real separable Hilbert space is studied. When the operators A(t) satisfy Acquistapace-Terreni conditions, and with some suitable assumptions, the existence and uniqueness of a square-mean almost periodic mild solution to the equations are obtained.展开更多
In this paper, the Ito-Taylor expansion of stochastic differential equation is briefly introduced. The colored rooted tree theory is applied to derive strong order 1.0 implicit stochastic Runge-Kutta method(SRK). Two ...In this paper, the Ito-Taylor expansion of stochastic differential equation is briefly introduced. The colored rooted tree theory is applied to derive strong order 1.0 implicit stochastic Runge-Kutta method(SRK). Two fully implicit schemes are presented and their stability qualities are discussed. And the numerical report illustrates the better numerical behavior.展开更多
In this paper,we consider the stochastic differential equations with piecewise continuous arguments(SDEPCAs)in which the drift coefficient satisfies the generalized one-sided Lipschitz condition and the diffusion coef...In this paper,we consider the stochastic differential equations with piecewise continuous arguments(SDEPCAs)in which the drift coefficient satisfies the generalized one-sided Lipschitz condition and the diffusion coefficient satisfies the linear growth condition.Since the delay term t-[t]of SDEPCAs is not continuous and differentiable,the variable substitution method is not suitable.To overcome this dificulty,we adopt new techniques to prove the boundedness of the exact solution and the numerical solution.It is proved that the truncated Euler-Maruyama method is strongly convergent to SDEPCAs in the sense of L'(q≥2).We obtain the convergence order with some additional conditions.An example is presented to illustrate the analytical theory.展开更多
We study R^(d)-valued mean-field stochastic differential equations with a diffusion coefficient that varies in a discontinuous manner on the L_(p)-norm of the process.We establish the existence of a unique global stro...We study R^(d)-valued mean-field stochastic differential equations with a diffusion coefficient that varies in a discontinuous manner on the L_(p)-norm of the process.We establish the existence of a unique global strong solution in the presence of a robust drift,while also investigating scenarios where the presence of a global solution is not assured.展开更多
This paper is concerned with coupled linear forward-backward stochastic differential equations(FBSDEs,for short).When the homogeneous coefficients are deterministic(the non-homogeneous coefficients can be random),we o...This paper is concerned with coupled linear forward-backward stochastic differential equations(FBSDEs,for short).When the homogeneous coefficients are deterministic(the non-homogeneous coefficients can be random),we obtain an L^(P)-result(p>2),including the existence and uniqueness of the p-th power integrable solution,a p-th power estimate,and a related continuous dependence property of the solution on the coefficients,for coupled linear FBSDEs in the monotonicity framework over large time intervals.In order to get rid of the stubborn constraint commonly existing in the literature,i.e.,the Lipschitz constant of σ with respect to z is very small,we introduce a linear transformation to overcome the difficulty on small intervals,and then"splice"the L^(P)-results obtained on many small intervals to yield the desired one on a large interval.展开更多
Anticipated backward stochastic differential equations, studied the first time in 2007, are equations of the following type:{-dY t = f(t1, Y t1 , Z t1 , Y t+δ(t) , Z t+ζ(t) )dt Z t dB t1 , t ∈ [0, T ], Y t = ξ t1 ...Anticipated backward stochastic differential equations, studied the first time in 2007, are equations of the following type:{-dY t = f(t1, Y t1 , Z t1 , Y t+δ(t) , Z t+ζ(t) )dt Z t dB t1 , t ∈ [0, T ], Y t = ξ t1 , t ∈ [T, T + K], Z t = η t1 , t ∈ [T, T + K].In this paper, we give a necessary and sufficient condition under which the comparison theorem holds for multidimensional anticipated backward stochastic differential equations with generators independent of the anticipated term of Z.展开更多
This paper discusses mean-field backward stochastic differentiM equations (mean-field BS- DEs) with jumps and a new type of controlled mean-field BSDEs with jumps, namely mean-field BSDEs with jumps strongly coupled...This paper discusses mean-field backward stochastic differentiM equations (mean-field BS- DEs) with jumps and a new type of controlled mean-field BSDEs with jumps, namely mean-field BSDEs with jumps strongly coupled with the value function of the associated control problem. The authors first prove the existence and the uniqueness as well as a comparison theorem for the above two types of BSDEs. For this the authors use an approximation method. Then, with the help of the notion of stochastic backward semigroups introduced by Peng in 1997, the authors get the dynamic programming principle (DPP) for the value functions. Furthermore, the authors prove that the value function is a viscosity solution of the associated nonlocal Hamilton-Jacobi-Bellman (HJB) integro-partial differential equation, which is unique in an adequate space of continuous functions introduced by Barles, et al. in 1997.展开更多
In the paper, stochastic differential equations with random impulses and Markovian switching are brought forward, where the so-called random impulse means that impulse ranges are driven by a series of random variables...In the paper, stochastic differential equations with random impulses and Markovian switching are brought forward, where the so-called random impulse means that impulse ranges are driven by a series of random variables and impulse times are a random sequence, so these equations extend stochastic differential equations with jumps and Markovian switching. Then the existence and uniqueness of solutions to such equations are investigated by employing the Bihari inequality under non-Lipschtiz conditions.展开更多
In this paper,we study a new class of equations called mean-field backward stochastic differential equations(BSDEs,for short)driven by fractional Brownian motion with Hurst parameter H>1/2.First,the existence and u...In this paper,we study a new class of equations called mean-field backward stochastic differential equations(BSDEs,for short)driven by fractional Brownian motion with Hurst parameter H>1/2.First,the existence and uniqueness of this class of BSDEs are obtained.Second,a comparison theorem of the solutions is established.Third,as an application,we connect this class of BSDEs with a nonlocal partial differential equation(PDE,for short),and derive a relationship between the fractional mean-field BSDEs and PDEs.展开更多
This is one of our series works on numerical methods for mean-field forward backward stochastic differential equations(MFBSDEs).In this work,we propose an explicit multistep scheme for MFBSDEs which is easy to impleme...This is one of our series works on numerical methods for mean-field forward backward stochastic differential equations(MFBSDEs).In this work,we propose an explicit multistep scheme for MFBSDEs which is easy to implement,and is of high order rate of convergence.Rigorous error estimates of the proposed multistep scheme are presented.Numerical experiments are carried out to show the efficiency and accuracy of the proposed scheme.展开更多
This paper is concerned with the approximate controllability of nonlinear fractional impulsive neutral stochastic integro-differential equations with nonlocal conditions and infinite delay in Hilbert spaces under the ...This paper is concerned with the approximate controllability of nonlinear fractional impulsive neutral stochastic integro-differential equations with nonlocal conditions and infinite delay in Hilbert spaces under the assumptions that the corresponding linear system is approximately controllable. By the Krasnoselskii-Schaefer-type fixed point theorem and stochastic analysis theory, some sufficient conditions are given for the approximate controllability of the system. At the end, an example is given to illustrate the application of our result.展开更多
This paper mainly studies one-dimensional mean-field backward stochastic differential equations(MFBSDEs)when their coefficient g is uniformly continuous in(y′,y,z),independent of zand non-decreasing in y′.The exist...This paper mainly studies one-dimensional mean-field backward stochastic differential equations(MFBSDEs)when their coefficient g is uniformly continuous in(y′,y,z),independent of zand non-decreasing in y′.The existence of the solution of this kind MFBSDEs has been well studied.The uniqueness of the solution ofMFBSDE is proved when g is also independent of y.Moreover,MFBSDE with coefficient g+c,in which c is a real number,has non-unique solutions,and it’s at most countable.展开更多
In this paper,the authors study a class of general mean-field BDSDEs whose coefficients satisfy some stochastic conditions.Specifically,the authors prove the existence and uniqueness theorem of solution under stochast...In this paper,the authors study a class of general mean-field BDSDEs whose coefficients satisfy some stochastic conditions.Specifically,the authors prove the existence and uniqueness theorem of solution under stochastic Lipschitz condition and obtain the related comparison theorem.Besides,the authors further relax the conditions and deduce the existence theorem of solutions under stochastic linear growth and continuous conditions,and the authors also prove the associated comparison theorem.Finally,an asset pricing problem is discussed,which demonstrates the application of the general meanfield BDSDEs in finance.展开更多
This paper focuses on a Pareto cooperative differential game with a linear mean-field backward stochastic system and a quadratic form cost functional. Based on a weighted sum optimality method, the Pareto game is equi...This paper focuses on a Pareto cooperative differential game with a linear mean-field backward stochastic system and a quadratic form cost functional. Based on a weighted sum optimality method, the Pareto game is equivalently converted to an optimal control problem. In the first place,the feedback form of Pareto optimal strategy is derived by virtue of decoupling technology, which is represented by four Riccati equations, a mean-field forward stochastic differential equation(MF-FSDE),and a mean-field backward stochastic differential equation(MF-BSDE). In addition, the corresponding Pareto optimal solution is further obtained. Finally, the author solves a problem in mathematical finance to illustrate the application of the theoretical results.展开更多
基金supported in part by theNSFC(11871037)Shandong Province(JQ201202)+3 种基金NSFC-RS(11661130148NA150344)111 Project(B12023)supported by the Qingdao Postdoctoral Application Research Project(QDBSH20220202092)。
文摘In this paper we consider general coupled mean-field reflected forward-backward stochastic differential equations(FBSDEs),whose coefficients not only depend on the solution but also on the law of the solution.The first part of the paper is devoted to the existence and the uniqueness of solutions for such general mean-field reflected backward stochastic differential equations(BSDEs)under Lipschitz conditions,and for the one-dimensional case a comparison theorem is studied.With the help of this comparison result,we prove the existence of the solution for our mean-field reflected forward-backward stochastic differential equation under continuity assumptions.It should be mentioned that,under appropriate assumptions,we prove the uniqueness of this solution as well as that of a comparison theorem for mean-field reflected FBSDEs in a non-trivial manner.
文摘This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information available to the controller is possibly less than the overall information. All the system coefficients and the objective performance functional are allowed to be random, possibly non-Markovian. Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explicitly expressed.
基金National Natural Science Foundation of China ( No. 11171062 ) Natural Science Foundation for the Youth,China ( No.11101077) Innovation Program of Shanghai Municipal Education Commission,China ( No. 12ZZ063)
文摘One existence integral condition was obtained for the adapted solution of the general backward stochastic differential equations(BSDEs). Then by solving the integral constraint condition, and using a limit procedure, a new approach method is proposed and the existence of the solution was proved for the BSDEs if the diffusion coefficients satisfy the locally Lipschitz condition. In the special case the solution was a Brownian bridge. The uniqueness is also considered in the meaning of "F0-integrable equivalent class" . The new approach method would give us an efficient way to control the main object instead of the "noise".
基金Supported by National Natural Science Foundation of China(71171003,71210107026)Anhui Natural Science Foundation(10040606003)Anhui Natural Science Foundation of Universities(KJ2012B019,KJ2013B023)
文摘This paper is concerned with a class of uncertain backward stochastic differential equations (UBSDEs) driven by both an m-dimensional Brownian motion and a d-dimensional canonical process with uniform Lipschitzian coefficients. Such equations can be useful in mod- elling hybrid systems, where the phenomena are simultaneously subjected to two kinds of un- certainties: randomness and uncertainty. The solutions of UBSDEs are the uncertain stochastic processes. Thus, the existence and uniqueness of solutions to UBSDEs with Lipschitzian coeffi- cients are proved.
文摘In this paper, we present a local Lipchitz condition for the local existence of solution to a class of stochastic differential equations with finite delay in a real separable Hilbert space which has the following form:
基金Supported by Science and Technology Development Foundation of Shanghai Education Commission(No.02JG05044)
文摘For Duffle-Epstein type Backward Stochastic Differential Equations, the comparison theorem is proved. Based on the comparison theorem, by monotone iterative technique, the existence of the minimal and maximal solutions of the equations are proved.
基金Acknowledgement This article is funded by the National Natural Science Foundation of China (11161052), Guangxi Natural Science Foundation of China (201 ljjA10044) and Guangxi Education Hall Project (201012MS183)
文摘In this paper, a class of non-autonomous functional integro-differential stochastic equations in a real separable Hilbert space is studied. When the operators A(t) satisfy Acquistapace-Terreni conditions, and with some suitable assumptions, the existence and uniqueness of a square-mean almost periodic mild solution to the equations are obtained.
文摘In this paper, the Ito-Taylor expansion of stochastic differential equation is briefly introduced. The colored rooted tree theory is applied to derive strong order 1.0 implicit stochastic Runge-Kutta method(SRK). Two fully implicit schemes are presented and their stability qualities are discussed. And the numerical report illustrates the better numerical behavior.
基金supported by the National Natural Science Foundation of China(Nos.11671113,12071101).
文摘In this paper,we consider the stochastic differential equations with piecewise continuous arguments(SDEPCAs)in which the drift coefficient satisfies the generalized one-sided Lipschitz condition and the diffusion coefficient satisfies the linear growth condition.Since the delay term t-[t]of SDEPCAs is not continuous and differentiable,the variable substitution method is not suitable.To overcome this dificulty,we adopt new techniques to prove the boundedness of the exact solution and the numerical solution.It is proved that the truncated Euler-Maruyama method is strongly convergent to SDEPCAs in the sense of L'(q≥2).We obtain the convergence order with some additional conditions.An example is presented to illustrate the analytical theory.
文摘We study R^(d)-valued mean-field stochastic differential equations with a diffusion coefficient that varies in a discontinuous manner on the L_(p)-norm of the process.We establish the existence of a unique global strong solution in the presence of a robust drift,while also investigating scenarios where the presence of a global solution is not assured.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11871310,12271304 and 11971262)the Natural Science Foundation of Shandong Province(Grant No.ZR2020MA014)。
文摘This paper is concerned with coupled linear forward-backward stochastic differential equations(FBSDEs,for short).When the homogeneous coefficients are deterministic(the non-homogeneous coefficients can be random),we obtain an L^(P)-result(p>2),including the existence and uniqueness of the p-th power integrable solution,a p-th power estimate,and a related continuous dependence property of the solution on the coefficients,for coupled linear FBSDEs in the monotonicity framework over large time intervals.In order to get rid of the stubborn constraint commonly existing in the literature,i.e.,the Lipschitz constant of σ with respect to z is very small,we introduce a linear transformation to overcome the difficulty on small intervals,and then"splice"the L^(P)-results obtained on many small intervals to yield the desired one on a large interval.
文摘Anticipated backward stochastic differential equations, studied the first time in 2007, are equations of the following type:{-dY t = f(t1, Y t1 , Z t1 , Y t+δ(t) , Z t+ζ(t) )dt Z t dB t1 , t ∈ [0, T ], Y t = ξ t1 , t ∈ [T, T + K], Z t = η t1 , t ∈ [T, T + K].In this paper, we give a necessary and sufficient condition under which the comparison theorem holds for multidimensional anticipated backward stochastic differential equations with generators independent of the anticipated term of Z.
基金supported by the National Natural Science Foundation of China under Grant Nos.11171187,11222110Shandong Province under Grant No.JQ201202+1 种基金Program for New Century Excellent Talents in University under Grant No.NCET-12-0331111 Project under Grant No.B12023
文摘This paper discusses mean-field backward stochastic differentiM equations (mean-field BS- DEs) with jumps and a new type of controlled mean-field BSDEs with jumps, namely mean-field BSDEs with jumps strongly coupled with the value function of the associated control problem. The authors first prove the existence and the uniqueness as well as a comparison theorem for the above two types of BSDEs. For this the authors use an approximation method. Then, with the help of the notion of stochastic backward semigroups introduced by Peng in 1997, the authors get the dynamic programming principle (DPP) for the value functions. Furthermore, the authors prove that the value function is a viscosity solution of the associated nonlocal Hamilton-Jacobi-Bellman (HJB) integro-partial differential equation, which is unique in an adequate space of continuous functions introduced by Barles, et al. in 1997.
基金Supported by National Natural Science Foundation of China (Grant No. 10771070), Doctoral Program Foundation of Ministry of Education of China (Grant No. 20060269016), and Natural Science Foundation of Shanghai (Grant No. 08ZR1407000)Acknowledgements The authors would like to thank the referee for his careful review and valuable suggestions.
文摘In the paper, stochastic differential equations with random impulses and Markovian switching are brought forward, where the so-called random impulse means that impulse ranges are driven by a series of random variables and impulse times are a random sequence, so these equations extend stochastic differential equations with jumps and Markovian switching. Then the existence and uniqueness of solutions to such equations are investigated by employing the Bihari inequality under non-Lipschtiz conditions.
基金supported by the National Key R&D Program of China (Grant No. 2018YFA0703900)the National Natural Science Foundation of China (Grant Nos. 11871309 and 11371226)+3 种基金supported by China Postdoctoral Science Foundation (Grant No. 2019M660968)Southern University of Science and Technology Start up fund Y01286233supported by Southern University of Science and Technology Start up fund Y01286120the National Natural Science Foundation of China (Grants Nos. 61873325,11831010)
文摘In this paper,we study a new class of equations called mean-field backward stochastic differential equations(BSDEs,for short)driven by fractional Brownian motion with Hurst parameter H>1/2.First,the existence and uniqueness of this class of BSDEs are obtained.Second,a comparison theorem of the solutions is established.Third,as an application,we connect this class of BSDEs with a nonlocal partial differential equation(PDE,for short),and derive a relationship between the fractional mean-field BSDEs and PDEs.
基金supported by the national key basic research program(Nos.2018YFB0704304,2018YFA0703900)Science Challenge Project(No.TZ2018001)+3 种基金NSF of China(Nos.11831010,11871068,11822111,11688101,11801320,12071261,12001539)Natural Science Foundation of Shandong Province(No.ZR2018BA005)NSF of Hunan Province(No.2020JJ5647)China Postdoctoral Science Foundation(No.2019TQ0073).
文摘This is one of our series works on numerical methods for mean-field forward backward stochastic differential equations(MFBSDEs).In this work,we propose an explicit multistep scheme for MFBSDEs which is easy to implement,and is of high order rate of convergence.Rigorous error estimates of the proposed multistep scheme are presented.Numerical experiments are carried out to show the efficiency and accuracy of the proposed scheme.
文摘This paper is concerned with the approximate controllability of nonlinear fractional impulsive neutral stochastic integro-differential equations with nonlocal conditions and infinite delay in Hilbert spaces under the assumptions that the corresponding linear system is approximately controllable. By the Krasnoselskii-Schaefer-type fixed point theorem and stochastic analysis theory, some sufficient conditions are given for the approximate controllability of the system. At the end, an example is given to illustrate the application of our result.
基金supported by the NSF of P.R.China[grant number 11071144],[grant number 11171187],[grant number 11222110],Shandong Province[grant number BS2011SF010],[grant number JQ201202]Program for New Century Excellent Talents in University[grant number NCET-12-0331],111 Project[grant number B12023].
文摘This paper mainly studies one-dimensional mean-field backward stochastic differential equations(MFBSDEs)when their coefficient g is uniformly continuous in(y′,y,z),independent of zand non-decreasing in y′.The existence of the solution of this kind MFBSDEs has been well studied.The uniqueness of the solution ofMFBSDE is proved when g is also independent of y.Moreover,MFBSDE with coefficient g+c,in which c is a real number,has non-unique solutions,and it’s at most countable.
基金supported by the Zhiyuan Science Foundation of BIPT under Grant No.2024212National Key R&D Program of China under Grant No.2018YFA0703900+1 种基金the National Natural Science Foundation of China under Grant Nos.11871309 and 11371226Natural Science Foundation of Shandong Province under Grant No.ZR2020QA026.
文摘In this paper,the authors study a class of general mean-field BDSDEs whose coefficients satisfy some stochastic conditions.Specifically,the authors prove the existence and uniqueness theorem of solution under stochastic Lipschitz condition and obtain the related comparison theorem.Besides,the authors further relax the conditions and deduce the existence theorem of solutions under stochastic linear growth and continuous conditions,and the authors also prove the associated comparison theorem.Finally,an asset pricing problem is discussed,which demonstrates the application of the general meanfield BDSDEs in finance.
基金supported by the National Key R&D Program of China under Grant No. 2022YFA1006103the National Natural Science Foundation of China under Grant Nos. 61821004, 61925306, and 11831010the Natural Science Foundation of Shandong Province under Grant Nos. ZR2019ZD42 and ZR2020ZD24。
文摘This paper focuses on a Pareto cooperative differential game with a linear mean-field backward stochastic system and a quadratic form cost functional. Based on a weighted sum optimality method, the Pareto game is equivalently converted to an optimal control problem. In the first place,the feedback form of Pareto optimal strategy is derived by virtue of decoupling technology, which is represented by four Riccati equations, a mean-field forward stochastic differential equation(MF-FSDE),and a mean-field backward stochastic differential equation(MF-BSDE). In addition, the corresponding Pareto optimal solution is further obtained. Finally, the author solves a problem in mathematical finance to illustrate the application of the theoretical results.