期刊文献+
共找到53篇文章
< 1 2 3 >
每页显示 20 50 100
Tuning the electronic conductance of REH_(x)(RE=Nd,Ce,Pr)by structural deformation
1
作者 Shangshang Wang Weijin Zhang +6 位作者 Jirong Cui Shukun Liu Hong Wen Jianping Guo Teng He Hujun Cao Ping Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期440-445,I0010,共7页
Hydride ion(H-)conductors have drawn much attention due to their potential applications in hydrideion-based devices.Rare earth metal hydrides(REH_(x))have fast H-conduction which,unfortunately,is accompanied by detrim... Hydride ion(H-)conductors have drawn much attention due to their potential applications in hydrideion-based devices.Rare earth metal hydrides(REH_(x))have fast H-conduction which,unfortunately,is accompanied by detrimental electron conduction preventing their application as ion conductors.Here,REH_(x)(RE=Nd,Ce,and Pr)with varied grain sizes,rich grain boundaries,and defects have been prepared by ball milling and subsequent sintering.The electronic conductivity of the ball-milled REH_(x)samples can be reduced by 2-4 orders of magnitude compared with the non-ball-milled samples.The relationship of electron conduction and miscrostructures in REH_(x)is studied and discussed based on experimental data and previously-proposed classical and quantum theories.The H-conductivity of all REH_(x)is about 10^(-4)to 10^(-3)S cm^(-1)at room temperature,showing promise for the development of H-conductors and their applications in clean energy storage and conversion. 展开更多
关键词 Hydride ion conduction Electron conduction Nanosized grain Crystal defect Electron scattering
下载PDF
Machine Learning Approach Accelerates Search for Solid State Electrolytes
2
作者 Le Tang Guozhen Zhang Jun Jiang 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2024年第4期505-512,I0039-I0041,I0094,共12页
In the current aera of rapid development in the field of electric vehicles and electrochemical energy storage,solid-state battery technology is attracting much research and attention.Solid-state electrolytes,as the ke... In the current aera of rapid development in the field of electric vehicles and electrochemical energy storage,solid-state battery technology is attracting much research and attention.Solid-state electrolytes,as the key component of next-generation battery technology,are favored for their high safety,high energy density,and long life.However,finding high-performance solid-state electrolytes is the primary challenge for solid-state battery applications.Focusing on inorganic solid-state electrolytes,this work highlights the need for ideal solid-state electrolytes to have low electronic conductivity,good thermal stability,and structural and phase stability.Traditional experimental and theoretical computational methods suffer from inefficiency,thus machine learning methods become a novel path to intelligently predict material properties by analyzing a large number of inorganic structural properties and characteristics.Through the gradient descent-based XGBoost algorithm,we successfully predicted the energy band structure and stability of the materials,and screened out only 194 ideal solid-state electrolyte structures from more than 6000 structures that satisfy the requirements of low electronic conductivity and stability simultaneously,which greatly accelerated the development of solid-state batteries. 展开更多
关键词 Solid-state battery Solid-state electrolyte XGBoost algorithm Low electronic conductivity Thermal stability
下载PDF
Investigating Stability Properties for Transition Metal Carbonate Precursors Using Universal Cluster Expansion Technique(UNCLE)as Cathodes for Li-Ion Batteries
3
作者 Mogahabo Tebogo Morukuladi N.L.Lethole +2 位作者 M.C.Masedi N.N.Ngoepe P.E.Ngoepe 《材料科学与工程(中英文A版)》 2024年第1期26-33,共8页
The universal cluster expansion technique was used in this study to determine the binary phase diagrams for the transition metal carbonate precursors MCO3(M:Mn,Ni,Co).The use of mixed cathode materials in lithium-ion ... The universal cluster expansion technique was used in this study to determine the binary phase diagrams for the transition metal carbonate precursors MCO3(M:Mn,Ni,Co).The use of mixed cathode materials in lithium-ion batteries such as NMC(Ni,Mn and Co)formulations,is a strategic approach to optimize performance,enhance safety and address cost and environmental considerations in the rapidly evolving field of energy storage.This study focuses on the cost issue related to lithium ion batteries by investigating the manganese rich NMC since manganese is more abundant and cost-effective.We doped MnCO3 with nickel and doped MnCO3 with cobalt then ran cluster expansion calculations to generate binary phases.The binary phase diagrams generated indicated that doping MnCO3 with nickel favours the Mn-rich side,while doping MnCO3 with cobalt favours 50%Mn-rich and 50%Co-rich.We further extracted the most stable structures from both binary diagrams and determined their electronic,mechanical and vibrational stabilities using DFT(density functional theory)calculations within the LDA(local gradient approximation)with Hubbard parameter(U).The electronic properties revealed that both materials are semiconductors due to their narrow energy band gap obtained while the mechanical properties showed that structures are mechanically stable since their necessary conditions for trigonal and triclinic systems were satisfied. 展开更多
关键词 Binary phase diagrams mechanical properties electronic conductivity phonon dispersion curves.
下载PDF
A Modification of LiMn2O4 by Ionic Conductive Agent and Electronic Conductive Agent Coating
4
作者 Xiaohui Sun Meng Wang +1 位作者 Tianming Yuan Jingkang Li 《Natural Science》 2024年第1期1-6,共6页
Carbon was used as electronic conductive agent, and metasilicic acid lithium (Li<sub>2</sub>SiO<sub>3</sub>) as ionic conductive agent, the two factors were investigated cooperatively. We evalu... Carbon was used as electronic conductive agent, and metasilicic acid lithium (Li<sub>2</sub>SiO<sub>3</sub>) as ionic conductive agent, the two factors were investigated cooperatively. We evaluated their effect by using spherical spinel LiMn<sub>2</sub>O<sub>4</sub> which prepared ourselves as cathode material. Then Li<sub>2</sub>SiO<sub><sub></sub>3</sub>/carbon surface coating on LiMn<sub><sub></sub>2</sub>O<sub>4</sub> (LMO/C/LSO) which Li<sub><sub></sub>2</sub>SiO<sub><sub></sub>3</sub> inside and carbon/Li<sub><sub></sub>2</sub>SiO<sub><sub></sub>3</sub> coated LiMn<sub><sub></sub>2</sub>O<sub><sub></sub>4</sub> (LMO/LSO/C) were prepared, All of materials were characterized by X-ray diffraction (XRD) and electrochemical test;spherical LiMn<sub></sub>2O<sub></sub>4 was characterized by scanning electron microscopy (SEM);and coated materials were characterized by transmission electron microscopy (TEM). While uncoated spinel LiMn<sub><sub></sub>2</sub>O<sub><sub></sub>4</sub> maintained 72% of capacity in 60 cycles by the rate of 0.2C, and LMO/LSO/C showed the best electrochemical performance, 89% of the initial capacity remained after 75 cycles at 0.2C. Furthermore, the rate performance of LMO/LSO/C also improved obviously, about 30 mAh·g<sup>-1</sup> of capacity attained at the rate of 5C, higher than LMO/C/LSO and bare LiMn<sub><sub></sub>2</sub>O<sub><sub></sub>4</sub>. 展开更多
关键词 Electronic conduction Ionic conduction LMO/LSO/C
下载PDF
Ni-P-SBR composite-electroless-plating enables Si anode with high conductivity and elasticity for high performance Li-ion batteries application
5
作者 Yuxiao Wang Jian Gou +3 位作者 Hongzhang Zhang Xiaofei Yang Huamin Zhang Xianfeng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期59-66,I0003,共9页
Silica-based anode is widely employed for high energy density Li-ion batteries owing to their high theoretical specific capacity(4200 m A h g-1).However,it is always accompanied by a huge volume expansion(300%)and shr... Silica-based anode is widely employed for high energy density Li-ion batteries owing to their high theoretical specific capacity(4200 m A h g-1).However,it is always accompanied by a huge volume expansion(300%)and shrinks during the lithiation/delithiation process,further leading to low cycle stability.Efforts to mitigate the adverse effects caused by volume expansion such as robust binder matrix,Coreshell structure,etc.,inevitably affect the electronic conductivity within the electrode.Herein,a high conductivity and elasticity Si anode(Ni-P-SBR(styrene-butadiene rubber)@Si)was designed and fabricated via the Ni-P-SBR composite-electroless-plating process.In this design,the Si particles are surrounded by SBR polymer and Ni particles,where the SBR can adapt to the volume change and Ni particles can provide the electrode with high electronic conductivity.Therefore,the Ni-P-SBR@Si delivers a high initial capacity of 3470 m A h g-1and presents capacity retention of 49.4%within 200 cycles at 600 m A g-1.Additionally,a high capacity of 1153 m A h g-1can be achieved at 2000 m A g-1and can be cycled stably under bending conditions.This strategy provides feasible ideas to solve the key issues that limit the practical application of Si anodes. 展开更多
关键词 Silicon anode Volume expansion Composite-electroless-plating High elasticity High electronic conductivity
下载PDF
Synthesis and electrochemical performance of La_(2)CuO_(4)as a promising coating material for high voltage Li-rich layered oxide cathodes
6
作者 郭福亮 卢嘉泽 +4 位作者 苏美华 陈约 郑杰允 尹良 李泓 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期124-132,共9页
The structural transformations,oxygen releasing and side reactions with electrolytes on the surface are considered as the main causes of the performance degradation of Li-rich layered oxides(LROs)cathodes in Li-ion ba... The structural transformations,oxygen releasing and side reactions with electrolytes on the surface are considered as the main causes of the performance degradation of Li-rich layered oxides(LROs)cathodes in Li-ion batteries.Thus,stabilizing the surfaces of LROs is the key to realize their practical application in high energy density Li-ion batteries.Surface coating is regarded as one of the most effective strategies for high voltage cathodes.The ideal coating materials should prevent cathodes from electrolyte corrosion and possess both electronic and Li-ionic conductivities simultaneously.However,commonly reported coating materials are unable to balance these functions well.Herein,a new type of coating material,La_(2)CuO_(4)was introduced to mitigate the surface issues of LROs for the first time,due to its superb electronic conductivity(26-35 mS·cm^(-1))and lithium-ionic diffusion coefficient(10^(-12)-10^(-13)cm^(2)·s^(-1)).After coating with the La_(2)CuO_(4),the capacity retention of Li_(1.2)Ni_(0.54)Co_(0.13)Mn_(0.13)O_(2)cathode was increased to 85.9%(compared to 79.3%of uncoated cathode)after 150 cycles in the voltage range of 2.0-4.8 V.In addition,only negligible degradations on the deliverable capacity and rate capability were observed. 展开更多
关键词 La_(2)CuO_(4) electronic conductivity Li-ionic conductivity Li-rich layered oxides high voltage
下载PDF
Discrete Model of Plasticity and Failure of Crystalline Materials 被引量:1
7
作者 V. L. Busov 《Applied Mathematics》 2021年第3期147-156,共10页
Within the framework of a discrete model of the nuclei of linear and planar defects, the variational principles of sliding in translational and rotational plasticity, fracture by separation (cleavage) and shear (shear... Within the framework of a discrete model of the nuclei of linear and planar defects, the variational principles of sliding in translational and rotational plasticity, fracture by separation (cleavage) and shear (shearing) in crystalline materials are considered. The analysis of mass transfer fluxes near structural kinetic transitions of slip bands into cells, cells into fragments of deformation origin, destruction by separation and shear for fractal spaces using fractional Riemann-Liouville derivatives, local and global criteria of destruction is carried out. One of the possible schemes of the crack initiation and growth mechanism in metals is disclosed. It is shown that the discrete model of plasticity and fracture does not contradict the known dislocation models of fracture and makes it possible to abandon the kinetic concept of thermofluctuation rupture of interatomic bonds at low temperatures. 展开更多
关键词 Variational Principles of Plasticity and Destruction PHOTOelectrons conduction electrons Injected electrons Fractal Space Fracture Criteria
下载PDF
CNTs@S composite as cathode for all-solid-state lithium-sulfur batteries with ultralong cycle life 被引量:7
8
作者 Qiang Zhang Ning Huang +3 位作者 Zhen Huang Liangting Cai Jinghua Wu Xiayin Yao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第1期151-155,I0006,共6页
The main challenges in development of traditional liquid lithium-sulfur batteries are the shuttle effect at the cathode caused by the polysulfide and the safety concern at the Li metal anode arose from the dendrite fo... The main challenges in development of traditional liquid lithium-sulfur batteries are the shuttle effect at the cathode caused by the polysulfide and the safety concern at the Li metal anode arose from the dendrite formation.All-solid-state lithium-sulfur batteries have been proposed to solve the shuttle effect and prevent short circuits.However,solid-solid contacts between the electrodes and the electrolyte increase the interface resistance and stress/strain,which could result in the limited electrochemical performances.In this work,the cathode of all-solid-state lithium-sulfur batteries is prepared by depositing sulfur on the surface of the carbon nanotubes(CNTs@S)and further mixing with Li10GeP2S12 electrolyte and acetylene black agents.At 60℃,CNTs@S electrode exhibits superior electrochemical performance,delivering the reversible discharge capacities of 1193.3,959.5,813.1,569.6 and 395.5 mAhg^-1 at the rate of 0.1,0.5,1,2 and 5 C,respectively.Moreover,the CNTs@S is able to demonstrate superior high-rate capability of 660.3 mAhg^-1 and cycling stability of 400 cycles at a high rate of 1.0 C.Such uniform distribution of the CNTs,S and Li10GeP2S12 electrolyte increase the electronic and ionic conductivity between the cathode and the electrolyte hence improves the rate performance and capacity retention. 展开更多
关键词 CNTs@S composite All-solid-state lithium-sulfur battery Electronic conduction network Interfacial contact Ultralong cycle life
下载PDF
Architecture engineering of carbonaceous anodes for high-rate potassium-ion batteries 被引量:5
9
作者 Tianlai Wu Weicai Zhang +6 位作者 Jiaying Yang Qiongqiong Lu Jing Peng Mingtao Zheng Fei Xu Yingliang Liu Yeru Liang 《Carbon Energy》 CAS 2021年第4期554-581,共28页
The limited lithium resource in earth's crust has stimulated the pursuit of alternative energy storage technologies to lithium-ion battery.Potassium-ion batteries(KIBs)are regarded as a kind of promising candidate... The limited lithium resource in earth's crust has stimulated the pursuit of alternative energy storage technologies to lithium-ion battery.Potassium-ion batteries(KIBs)are regarded as a kind of promising candidate for large-scale energy storage owing to the high abundance and low cost of potassium resources.Nevertheless,further development and wide application of KIBs are still challenged by several obstacles,one of which is their fast capacity deterioration at high rates.A considerable amount of effort has recently been devoted to address this problem by developing advanced carbonaceous anode materials with diverse structures and morphologies.This review presents and highlights how the architecture engineering of carbonaceous anode materials gives rise to high-rate performances for KIBs,and also the beneficial conceptions are consciously extracted from the recent progress.Particularly,basic insights into the recent engineering strategies,structural innovation,and the related advances of carbonaceous anodes for high-rate KIBs are under specific concerns.Based on the achievements attained so far,a perspective on the foregoing,and proposed possible directions,and avenues for designing high-rate anodes,are presented finally. 展开更多
关键词 carbonaceous anodes electronic conductivity high-rate performance ion diffusivity potassiumion batteries
下载PDF
Study on rare earth electrolyte of SDC-LSGM 被引量:3
10
作者 徐丹 刘晓梅 +4 位作者 朱成军 王德军 严端廷 王德涌 苏文辉 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第2期241-244,共4页
Ce0.85Sm0.15O1.925 (SDC) and La0.9Sr0.1Ga0.5Mg0.2O2.85 (LSGM) were synthesized using Glycine-Nitrate Process (GNP), and the composite electrolytes were prepared by mixing SDC and LSGM. An X-ray diffraction patte... Ce0.85Sm0.15O1.925 (SDC) and La0.9Sr0.1Ga0.5Mg0.2O2.85 (LSGM) were synthesized using Glycine-Nitrate Process (GNP), and the composite electrolytes were prepared by mixing SDC and LSGM. An X-ray diffraction pattern indicated that the mixture of SDC and LSGM consisted of their original phases after heating at 1450 ℃ for 10 h. The electronic conductivity of SDC-LSGM composite electrolytes were measured by direct current polarization method using Hebb-Wagner ion blocking cell at 700-800 ℃ in the oxygen partial pressure range of 104-10-20 MPa and compared with the results of SDC. Typical polarization curves, which were theoretically predicted, were observed on all the samples. The slopes of lgσe-lgPo2 plot for all the composite electrolytes agreed with the theoretically predicted value of-1/4 at some intermediate oxygen partial pressures and -1/6 at low oxygen partial pressure. The electronic conductivity of SDC-LSGM composite electrolytes decreased with the increase in LSGM content, whereas the ionic transport number ti of all the samples increased with the increase in LSGM content. 展开更多
关键词 composite electrolyte SDC electronic conductivity ionic transport number rare earths
下载PDF
A review on electronically conducting polymers for lithium-sulfur battery and lithium-selenium battery:Progress and prospects 被引量:3
11
作者 Hengying Xiang Nanping Deng +5 位作者 Huijuan Zhao Xiaoxiao Wang Liying Wei Meng Wang Bowen Cheng Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期523-556,共34页
Lithium-sulfur(Li-S) batteries and lithium-selenium(Li-Se) batteries,as environmental protection energy storage systems with outstanding theoretical specific capacities and high energy densities,have become the hotspo... Lithium-sulfur(Li-S) batteries and lithium-selenium(Li-Se) batteries,as environmental protection energy storage systems with outstanding theoretical specific capacities and high energy densities,have become the hotspots of current researches.Besides,elemental S(Se) raw materials are widely sourced and their production costs are both low,which make them considered one of the new generations of high energy density electrochemical energy storage systems with the most potential for development.However,poor conductivity of elemental S/Se and the notorious "shuttle effect" of lithium polysulfides(polyselenides) severely hinder the commercialization of Li-S/Se batteries.Thanks to the excellent electrical conductivity and strong absorption of lithium polysulfide(polyselenide) about electronically conducting polymer,some of the above thorny problems have been effectively alleviated.The review presents the fundamental studies and current development trends of common electronically conducting polymers in various components of Li-S/Se batteries,which involves polyaniline(PANI) polypyrrole(PPy),and polythiophene(PTh) with its derivatives,e.g.polyethoxythiophene(PEDOT) and poly(3,4-ethylene dioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS).Finally,the review not only summarizes the research directions and challenges facing the application of electronically conducting polymers,but also looks forward to the development prospects of them,which will provide a way for the practical use of electronically conducting polymers in Li-S/Se batteries with outstanding electrochemical properties in the short run. 展开更多
关键词 Li-S/Se batteries Electronically conducting polymer Various battery components Suppressed"shuttle effect" Outstanding electrochemical properties
下载PDF
Hydrogen Permeation Properties of Perovskite-type BaCe_(0.9)Mn_(0.1)O_(3-δ)Dense Ceramic Membrane 被引量:2
12
作者 Guang Tao LI Guo Xing XIONG +1 位作者 Shi Shan SHENG Wei Shen YANG 《Chinese Chemical Letters》 SCIE CAS CSCD 2001年第10期937-940,共4页
The electrical conduction properties of dense BaCe0.9Mn0.1O3-d (BCM10) membrane were investigated in the temperature range of 600-900oC. High ionic and electronic conductivities at elevated temperatures make BCM10 a ... The electrical conduction properties of dense BaCe0.9Mn0.1O3-d (BCM10) membrane were investigated in the temperature range of 600-900oC. High ionic and electronic conductivities at elevated temperatures make BCM10 a potential ceramic material for hydrogen separation. Hydrogen permeation through BCM10 membranes was studied using a high- temperature permeation cell. Little hydrogen could be detected at the sweep side. However, appreciable hydrogen can permeate through BCM10 membrane coated with porous platinum black, which shows that the process of hydrogen permeation through BCM10 membranes was controlled by the catalytic decomposition and recomposition of hydrogen on the surfaces of BCM10 membranes. 展开更多
关键词 Hydrogen permeation dense ceramic membranes barium cerate proton and electron conductivity.
下载PDF
Effect of ZrO_2 (9mol% Y_2O_3) coating thickness on the electronic conductivity of Mg-PSZ oxygen sensors 被引量:2
13
作者 ChangheGao HaileiZhao QingguoLiu WeijiangWu WeihuaQiu 《Journal of University of Science and Technology Beijing》 CSCD 2005年第2期160-165,共6页
The ZrO2 (9mol% Y2O3) coating was prepared evenly on the surface of MgO partially stabilized zirconia (Mg-PSZ) tube (oxygen sensor probe) by dipping the green Mg-PSZ tube in a ZrO2 (9mol% Y2O3) slurry and then co-fir... The ZrO2 (9mol% Y2O3) coating was prepared evenly on the surface of MgO partially stabilized zirconia (Mg-PSZ) tube (oxygen sensor probe) by dipping the green Mg-PSZ tube in a ZrO2 (9mol% Y2O3) slurry and then co-firing at 1750°C for 8 h. The double-cell method was employed to measure the electronic conductivity parameter and exam the reproducibility of the coated Mg- PSZ tube. The experimental results indicate that the good thermal shock resistance of the Mg-PSZ tube can be retained when the coating thickness is not more than 3.4 μm. The ZrO2 (9mol% Y2O3) coating reduces the electronic conductivity parameter remarka- bly, probably due to the lower electronic conductivity of Y2O,-stabilized ZrO2 than that of MgO-stabilized ZrO2. Moreover, the ZrO2 (9mol% Y2O3) coating can improve the reproducibility and accuracy of the Mg-PSZ tube significantly in the low oxygen measure- ment. The smooth surface feature and lower electronic conductivity of the coated Mg-PSZ tube should be responsible for this im- provement. 展开更多
关键词 oxygen sensor stabilized ZrO2 solid electrolyte COATING electronic conductivity
下载PDF
Preparation and characteristic of NASICON ceramics 被引量:1
14
作者 ZHU Dongmei LUO Fa XIE Zhanglong ZHOU Wancheng 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期39-42,共4页
Hot-pressed sintering was employed to prepare the sodium super ionic conductor (Na1+xZr2SixP3-xO12, 1.8≤x≤2.2) ceramics and compare with the sample obtained from normal-press sintering. The phase formation, density,... Hot-pressed sintering was employed to prepare the sodium super ionic conductor (Na1+xZr2SixP3-xO12, 1.8≤x≤2.2) ceramics and compare with the sample obtained from normal-press sintering. The phase formation, density, and conductivity of the hot-press sintered and the normal-press sintered samples were investigated in detail. Results show that the density of NASICON ceramics and the degree of crystallization can be improved by hot-press process efficiently. The density of the sample sintered by normal sintering is obviously lower than that sintered by hot press. XRD analysis indicates all the hot press sintered samples contain mainly monoclinic NASICON and no ZrO2 phase was found. The ionic conductivity of normal-press sintered sample is much lower than that of hot-press sintered sample. When the composition is close to Na3Zr2Si2PO12, the dc conductivities of the hot press sintered samples were in the order of 10-3 S·cm-1. The variation of the ac conductivity with frequency in the high frequency region agrees with the power law feature of σ(ω)∝ωn(0<n<1). 展开更多
关键词 NASICON normal sintering hot pressed sintering electronic conductivity
下载PDF
Understanding De-protonation Induced Formation of Spinel Phase in Li-rich Layered Oxides for Improved Rate Performance 被引量:1
15
作者 李保云 李广社 +3 位作者 张丹 范建明 冯涛 李莉萍 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2018年第11期1723-1736,共14页
Constructing layered-spinel composites is important to improve the rate performance of lithium-rich layered oxides.However,up to now,the effect of microstructure of composites on the rate performance has not been well... Constructing layered-spinel composites is important to improve the rate performance of lithium-rich layered oxides.However,up to now,the effect of microstructure of composites on the rate performance has not been well investigated.In this study,a series of samples were prepared by a simple protonation and de-protonation for the pristine layered material(LiMnNiCoO)obtained by sol-gel method.The characterizations of XRD,Raman and oxidation-reduction potentials of charge-discharge curves demonstrated that these samples after de-protonation are layered-spinel composites.When these composites were tested as a cathode of lithium-ion batteries,the sample treated with 0.1 M of nitric acid exhibited higher discharge capacities at each current density than that of other composites.The outstanding rate performance is attributed to the high concentration of conduction electron resulting from the low average valence state(44.2%of Ni)as confirmed by its high conductivity(1.124×10??mat39800Hz)and ambient temperature magnetic susceptibility(8.40×10emu/Oe?mol).This work has a guiding significance for the synthesis of high rate performance of lithium battery cathode materials. 展开更多
关键词 protonation and de-protonation layered-spinel composites rate performance conduction electron
下载PDF
Study on Electronic Conductivity of CaO-SiO2-Al2O3-FeOx Slag System 被引量:1
16
作者 LU Xiong-gang LI Fu-shen +1 位作者 LI Li-fen CHOU Kou-chih 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2000年第1期9-13,共5页
A study on electronic conductivity of CaO-SiO2-Al2O3-FeOxslag system with Wagner polarization technique was carried out.The experimental data show that electronic conductivity is consisted of free electron conductivit... A study on electronic conductivity of CaO-SiO2-Al2O3-FeOxslag system with Wagner polarization technique was carried out.The experimental data show that electronic conductivity is consisted of free electron conductivity and electron hole conductivity and both are related to the content of Fe3+and Fe2+.Free electron conductivity is decreasing and electron hole conductivity is increasing while Fe3+changes to Fe2+.There is a maximum electronic conductivity at some ratio of ferric ions Fe3+to total ion content.Under the experimental conditions,the electronic conductivity is in the range of 10-4—10-2S/cm. 展开更多
关键词 smelt slag electron hole electronic conductivity
下载PDF
Influence of Conductivity of Slag on Decarburization Reaction 被引量:1
17
作者 Xionggang Lu Fushen Li +1 位作者 Lifen Li Kouchih Chou (Laboratory on Solid Electrolytes and Metallurgical Testing Techniques, University of Science and Technology Beijing, Beijin 100083, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1998年第1期20-22,共3页
By altering the electrochemical properties of slag, the decarburization reaction of Fe3+-based slag withFe-C droplet was studied. The results showed that a lot of free electrons and holes exist in the slag containing ... By altering the electrochemical properties of slag, the decarburization reaction of Fe3+-based slag withFe-C droplet was studied. The results showed that a lot of free electrons and holes exist in the slag containing transition metal oxides (such as TiO2 and Fe2O3). So electronic conduction in the slag increases. Finally, it led to the increment of the decarburization reaction rate between slag and Fe-C droplet, and mass fraction of carbon remaining indroplet decreases to a lower level. 展开更多
关键词 smelt slag electronic conductivity decarburization reaction
下载PDF
INFLUENCE OF MAGNETIC FIELD ON ACCURACY OF ECM BY CHANGING THE CONDUCTIVITY OF ANODE FILM 被引量:3
18
作者 FAN Zhijian ZHANG Lixin TANG lin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第4期11-14,共4页
The change of conductivity, thickness and scanning electron microscopy (SEM) appearance of the anode film of CrWMn in 10% NaNO3 at different anode potential either with or without the magnetic field applied are inve... The change of conductivity, thickness and scanning electron microscopy (SEM) appearance of the anode film of CrWMn in 10% NaNO3 at different anode potential either with or without the magnetic field applied are investigated by testing film resistance, galvanostatic transient and using SEM to design magnetic circuit in magnetic assisted electrochemical machining (MAECM). The experiments show that the anode film has semi-conducting property. Compared with the situation without magnetic field applied, the resistance of the film formed at 1 .SV (anode potential) increased and decreased at 4.0V while B=0.4T and the magnetic north pole points toward anode. The SEM photo demonstrates that the magnetic field will densify the film in the passivation area and quicken dissolution of the anode metal in over-passivation area. Based on the influence of magnetic field on electrochemical machining(ECM) due to the changes of the anode film conductivity behavior, the magnetic north pole should be designed to point towards the workpiece surface that has been machined. Process experiments agree with the results of test analysis. 展开更多
关键词 Magnetic field Passive electrolyte Anode film Conductivity Magnetic assisted electrochemical machining(MAECM) Scanning electron microscopy(SEM)
下载PDF
Study on Conductivity of Ceramics LaFe_(1 - x) Ni_xO_(3-δ)
19
作者 王成建 魏建华 +4 位作者 陈延学 刘德胜 陈大卫 赵焕绥 李翠萍 《Journal of Rare Earths》 SCIE EI CAS CSCD 1999年第3期200-202,共3页
The LaFe 1-x Ni x O 3-δ serial ceramics were prepared by standard solid phase reaction method. Two arm electric bridge principal and four electrode method were adopted to measure the resistivit... The LaFe 1-x Ni x O 3-δ serial ceramics were prepared by standard solid phase reaction method. Two arm electric bridge principal and four electrode method were adopted to measure the resistivity. The results indicate that LaFe 1-x Ni x O 3-δ ceramics are of metallic state conductivity when x varies from 0 6 to 0 8. There are oxygen vacancies and conductive electrons in the ceramics, which results in highly mixed conductivity of electrons and oxygen ions. The amount of oxygen vacancies depends on the sintering techniques, so the proper increase of sintering temperature can decrease the room temperature resistivity. A phase transition is found at around 120 K in the low temperature experiment. 展开更多
关键词 Rare earths Conductive ceramics Metallic state conductivity Oxygen vacancy Conductive electrons Oxygen ions
下载PDF
Study on ESR Properties of a-Si_(1-x)Gd_x Films
20
作者 甘润今 张津燕 《Journal of Rare Earths》 SCIE EI CAS CSCD 1993年第4期269-272,共4页
ESR studies have been undertaken for various chemical composition of electron beam evapo- rated a-Si_(1-x)Gd_x films with 0<x≤10at%.The experimental results show that the g value changes with (2.0043±0.0001)... ESR studies have been undertaken for various chemical composition of electron beam evapo- rated a-Si_(1-x)Gd_x films with 0<x≤10at%.The experimental results show that the g value changes with (2.0043±0.0001)≤g≤(2.0054±0.0001),the line shape factor l changes with(2.77±0.01)≤l≤(3.10± 0.01)and the linewidth △B_(pp)changes with 6.40×10^(-4)≤△B_(pp)≤7.00×10^(-4)T.The experimental results were analysed with Barnes S.E.dynamic theory of ESR spectrum based on the characteristics of the ESR parameters.It was shown that the changes of ESR parameters depend on the compensation of Gd atoms for the dangling bonds in a-Si film,and the exchange interaction between the conduction electrons and the spins in the host materials. 展开更多
关键词 RE GD Amorphous alloy film ESR conduction electron
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部