期刊文献+
共找到140篇文章
< 1 2 7 >
每页显示 20 50 100
Ignition processes and characteristics of charring conductive polymers with a cavity geometry in precombustion chamber for applications in micro/nano satellite hybrid rocket motors
1
作者 Zhiyuan Zhang Hanyu Deng +2 位作者 Wenhe Liao Bin Yu Zai Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期55-66,共12页
The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of... The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually. 展开更多
关键词 Micro/nano satellite hybrid propulsion Arc ignition Charring conductive polymer Ignition mechanism Ignition characteristic Repeated ignition
下载PDF
Wearable and stretchable conductive polymer composites for strain sensors:How to design a superior one?
2
作者 Liwei Lin Sumin Park +6 位作者 Yuri Kim Minjun Bae Jeongyeon Lee Wang Zhang Jiefeng Gao Sun Ha Paek Yuanzhe Piao 《Nano Materials Science》 EI CAS CSCD 2023年第4期392-403,共12页
Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly ... Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly attached to human skin,providing visualized detection for human motions and personal healthcare.Conductive polymer composites(CPC)composed of conductive fillers and flexible polymers have the advantages of high stretchability,good flexibility,superior durability,which can be used to prepare flexible strain sensors with large working strain and outstanding sensitivity.This review has put forward a comprehensive summary on the fabrication methods,advanced mechanisms and strain sensing abilities of CPC strain sensors reported in recent years,especially the sensors with superior performance.Finally,the structural design,bionic function,integration technology and further application of CPC strain sensors are prospected. 展开更多
关键词 Wearable strain sensors conductive polymer composites MECHANISM Sensing performance
下载PDF
Breaking Through Bottlenecks for Thermally Conductive Polymer Composites:A Perspective for Intrinsic Thermal Conductivity,Interfacial Thermal Resistance and Theoretics 被引量:13
3
作者 Junwei Gu Kunpeng Ruan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第7期118-126,共9页
Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)va... Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)values of prepared thermally conductive polymer composites are still difficult to achieve expectations,which has become the bottleneck in the fields of thermally conductive polymer composites.Aimed at that,based on the accumulation of the previous research works by related researchers and our research group,this paper proposes three possible directions for breaking through the bottlenecks:(1)preparing and synthesizing intrinsically thermally conductive polymers,(2)reducing the interfacial thermal resistance in thermally conductive polymer composites,and(3)establishing suitable thermal conduction models and studying inner thermal conduction mechanism to guide experimental optimization.Also,the future development trends of the three above-mentioned directions are foreseen,hoping to provide certain basis and guidance for the preparation,researches and development of thermally conductive polymers and their composites. 展开更多
关键词 Thermally conductive polymer composites Intrinsic thermal conductivity Interfacial thermal resistance Thermal conduction models Thermal conduction mechanisms
下载PDF
Mussel‑Inspired Redox‑Active and Hydrophilic Conductive Polymer Nanoparticles for Adhesive Hydrogel Bioelectronics 被引量:5
4
作者 Donglin Gan Tao Shuai +6 位作者 Xiao Wang Ziqiang Huang Fuzeng Ren Liming Fang Kefeng Wang Chaoming Xie Xiong Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第12期117-132,共16页
Conductive polymers(CPs)are generally insoluble,and developing hydrophilic CPs is significant to broaden the applications of CPs.In this work,a mussel-inspired strategy was proposed to construct hydrophilic CP nanopar... Conductive polymers(CPs)are generally insoluble,and developing hydrophilic CPs is significant to broaden the applications of CPs.In this work,a mussel-inspired strategy was proposed to construct hydrophilic CP nanoparticles(CP NPs),while endowing the CP NPs with redox activity and biocompatibility.This is a universal strategy applicable for a series of CPs,including polyaniline,polypyrrole,and poly(3,4-ethylenedioxythiophene).The catechol/quinone contained sulfonated lignin(LS)was doped into various CPs to form CP/LS NPs with hydrophilicity,conductivity,and redox activity.These CP/LS NPs were used as versatile nanofillers to prepare the conductive hydrogels with long-term adhesiveness.The CP/LS NPs-incorporated hydrogels have a good conductivity because of the uniform distribution of the hydrophilic NPs in the hydrogel network,forming a well-connected electric path.The hydrogel exhibits long-term adhesiveness,which is attributed to the mussel-inspired dynamic redox balance of catechol/quinone groups on the CP/LS NPs.This conductive and adhesive hydrogel shows good electroactivity and biocompatibility and therefore has broad applications in electrostimulation of tissue regeneration and implantable bioelectronics. 展开更多
关键词 Mussel-inspired Redox-active nanoparticles conductive polymer conductive hydrogel Adhesive bioelectronics
下载PDF
Study on the High Conductive Polymer as the Miniaturized Reference Electrode
5
作者 Jung-Chuan Chou Chien-Cheng Chen 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期254-255,共2页
The polypyrrole is the high conductive polymer which was coated onto indium tin oxide (ITO) glass substrate by electroplated technique to fabricate a miniaturized reference electrode.Besides,the morphology of the ITO... The polypyrrole is the high conductive polymer which was coated onto indium tin oxide (ITO) glass substrate by electroplated technique to fabricate a miniaturized reference electrode.Besides,the morphology of the ITO glass reference electrode electroplated with pyrrole has been studied through the instrumental analysis utilizing cyclic voltammetry (CV). Furthermore,the sensing characteristics of the reference electrode have been measured by using commercial instrumental amplifier as the readout circuit.Using the high conductive polymer as miniaturized reference electrode has many advantages such as easy fabrication of coating polymer,without any expensive fabricating equipment,easy carry by the miniaturized technique.Hence,it is suitable for the reference electrode production. 展开更多
关键词 miniaturized reference electrode POLYPYRROLE conductive polymer cyclic voltammetry
下载PDF
PEDOT:PSS:From conductive polymers to sensors
6
作者 Xiaoshuang Zhang Wentuo Yang +2 位作者 Hainan Zhang Mengying Xie Xuexin Duan 《Nanotechnology and Precision Engineering》 CAS CSCD 2021年第4期89-107,共19页
PEDOT:PSS conductive polymers have received tremendous attention over the last two decades owing to their high conductivity,ease of processing,and biocompatibility.As a flexible versatile material,PEDOT:PSS can be dev... PEDOT:PSS conductive polymers have received tremendous attention over the last two decades owing to their high conductivity,ease of processing,and biocompatibility.As a flexible versatile material,PEDOT:PSS can be developed into various forms and has had a significant impact on emerging sensing applications.This review covers the development of PEDOT:PSS from material to physical sensors.We focus on the morphology of PEDOT:PSS in the forms of aqueous dispersions,solid films,and hydrogels.Manufacturing processes are summarized,including coating,printing,and lithography,and there is particular emphasis on nanoimprinting lithography that enables the production of PEDOT:PSS nanowires with superior sensing performance.Applications to various physical sensors,for humidity,temperature,pressure,and strain,are demonstrated.Finally,we discuss the challenges and propose new directions for the development of PEDOT:PSS. 展开更多
关键词 PEDOT:PSS conductive polymer SENSOR Physical sensor Manufacturing process MORPHOLOGY
下载PDF
Recent progress in design of conductive polymers to improve the thermoelectric performance
7
作者 徐真 李慧 陈立东 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第2期22-32,共11页
Organic semiconductors,especially polymer semiconductors,have attracted extensive attention as organic thermoelectric materials due to their capabilities for flexibility,low-cost fabrication,solution processability an... Organic semiconductors,especially polymer semiconductors,have attracted extensive attention as organic thermoelectric materials due to their capabilities for flexibility,low-cost fabrication,solution processability and low thermal conductivity.However,it is challenging to obtain high-performance organic thermoelectric materials because of the low intrinsic carrier concentration of organic semiconductors.The main method to control the carrier concentration of polymers is the chemical doping process by charge transfer between polymer and dopant.Therefore,the deep understanding of doping mechanisms from the point view of chemical structure has been highly desired to overcome the bottlenecks in polymeric thermoelectrics.In this contribution,we will briefly review the recently emerging progress for discovering the structure–property relationship of organic thermoelectric materials with high performance.Highlights include some achievements about doping strategies to effectively modulate the carrier concentration,the design rules of building blocks and side chains to enhance charge transport and improve the doping efficiency.Finally,we will give our viewpoints on the challenges and opportunities in the field of polymer thermoelectric materials. 展开更多
关键词 conductive polymer organic thermoelectric material chemical doping side chain engineering
下载PDF
Conductive polymer hydrogel-coated nanopipette sensor with tunable size
8
作者 Lin Li Feng Zhou Qiannan Xue 《Nanotechnology and Precision Engineering》 CAS CSCD 2022年第4期18-25,共8页
Nanopipette-based sensors are one of the most effective tools for detecting nanoparticles,bioparticles,and biomolecules.Quantitative analysis of nanoparticles with different shapes and electrical charges is achieved t... Nanopipette-based sensors are one of the most effective tools for detecting nanoparticles,bioparticles,and biomolecules.Quantitative analysis of nanoparticles with different shapes and electrical charges is achieved through measurement of the blockage currents that occur when particles pass through the nanopore.However,typical nanopipette sensors fabricated using a conventional needle-pulling method have a typical pore-diameter limitation of around 100 nm.Herein,we report a novel conductive hydrogel-composited nanopipette sensor with a tunable inner-pore diameter.This is made by electrodepositing poly(3,4-ethylenedioxythiophene)polystyrene sulfonate onto the surface of a nanopipette with a prefabricated sacrificial copper layer.Because of the presence of copper ions,the conductive polymer can stably adhere to the tip of the nanopipette to form a nanopore;when nanoparticles pass through the conductive nanopore,more distinct blocking events are observed.The size of the nanopore can be changed simply by adjusting the electrodeposition time.In this way,suitable nanopores can be obtained for highly sensitive screening of a series of particles with diameters of the order of tens of nanometers. 展开更多
关键词 Nanopipette conductive polymer ELECTRODEPOSITION NANOPARTICLES
下载PDF
Conductive polymer scaffolds to improve neural recovery
9
作者 Shang Song Paul M.George 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第12期1976-1978,共3页
Injuries to the nervous system manifest in various forms ranging from stroke to trauma(i.e.,motor vehicle accidents,combats)to diabetic neuropathy as well as many other neurological diseases.Nerve regeneration remai... Injuries to the nervous system manifest in various forms ranging from stroke to trauma(i.e.,motor vehicle accidents,combats)to diabetic neuropathy as well as many other neurological diseases.Nerve regeneration remains a complex biological process that is challenging to address clinically.There is no effective medical treatment for central nervous system repair. 展开更多
关键词 conductive polymer scaffolds improve neural recovery
下载PDF
Study on the Structure and Properties of Ordered Conductive Polymer Ultrathin Film
10
作者 郑华靖 蒋亚东 +1 位作者 徐建华 杨亚杰 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2010年第10期1449-1458,共10页
A Langmuir-Blodgett (LB) inducing method was firstly used to prepare single layer and multilayer conducting composite PEDOT-PSS film. The film-forming ability of ionization ODA and ODA-SA monolayer spread on PEDOT-P... A Langmuir-Blodgett (LB) inducing method was firstly used to prepare single layer and multilayer conducting composite PEDOT-PSS film. The film-forming ability of ionization ODA and ODA-SA monolayer spread on PEDOT-PSS nanoparticle sub-phase and the behavior of ODA/PEDOT-PSS assembly particles on pure water were firstly investigated. The results indicated that nanoparticles in the suphase are packed in the ionization monolayer and stable complex Langmuir film is formed at the air/water interface. It has been found that the best film-forming conditions for composite film are as follows:distinct interface was formed between ODA and PEDOT-PSS layer and single layer thickness of PEDOT-PSS was about 23 nm,well accordant to the size of PEDOT-PSS nanoparticles. Different structures were designed to test the conductive ability of these composite films and a variable range hopping (VRH) model was used to explain the film conductive mechanism. The results indicated that a 3D-VRH model explained well the transferring of charge carrier in the multilayer film. 展开更多
关键词 conducting polymer PEDOT-PSS Langmuir-Blodgett film electrical conductivity
下载PDF
Recent Progress in Fabrication and Structural Design of Thermal Conductive Polymer Composites
11
作者 Yuan-Kai Du Zheng-Xue Shi +5 位作者 Shan Dong Hui Jin Xue Ke Pei Zhao Bing-Bing Jiang Feng You 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第3期277-291,I0004,共16页
In recent years, the demand direction for electronic equipment has expanded into embedded and miniaturized devices. The heat radiation problem has become one of the most significant factors for hindering the developme... In recent years, the demand direction for electronic equipment has expanded into embedded and miniaturized devices. The heat radiation problem has become one of the most significant factors for hindering the development of electronic devices. Since heat radiation material is one of the important components in electronic devices, the demand for enhancing thermal conductivity is also increasingly urgent. Research on thermal conductive polymer composites has become a major direction for developing functional composites. This work reviewed the recent progress in the fabrication of thermal conductive polymer composites. Five different structures are presented, including the using of single fillers,hybrid fillers, double threshold percolation structure, segregated structure and other complex multiphase structures. Specifically, the preparation of high-performance thermal conductive polymer composites was introduced through the combination of various thermal conductive fillers.Finally, the development direction of high thermal conductive polymer composites was briefly explored. 展开更多
关键词 Thermal conductive polymer Hybrid fillers polymer composite Thermal resistance
原文传递
High Performance Soft Electrochemical Actuators Based on Hierarchical Conductive Polymer Ionogels
12
作者 Hongwei Hu Shengtao Zhang +5 位作者 Yan Li Xinghao Hu Lin Xu Aixin Feng Guanggui Cheng Jianning Ding 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2755-2763,共9页
Electrochemical actuators based on conductive polymers are emerging as a strong competitive in the field of soft actuators because of their intrinsically conformable/elastic nature,low cost,low operating voltage and a... Electrochemical actuators based on conductive polymers are emerging as a strong competitive in the field of soft actuators because of their intrinsically conformable/elastic nature,low cost,low operating voltage and air-working ability.Recent development has shown that adding electroactive materials,such as CNT and graphene,can improve their actuation performance.Despite the complex material systems used,their output strains(one of the key factors)are generally lower than 1%,which limited further applications of them in multiple scenarios.Here,we report soft electrochemical actuators based on conductive polymer ionogels by embedding polyaniline particles between the PEDOT:PSS nanosheets.Results show that such a hierarchical structure not only leads to a high conductivity(1250 S/cm)but also improved electrochemical activities.At a low operating voltage of 1 V,the maximum strain of these soft actuators reaches an exceptional value of 1.5%,with a high blocking force of 1.3 mN.Using these high-performance electrochemical actuators,we demonstrate soft grippers for manipulating object and a bionic flower stimulated by an electrical signal.This work sets an important step towards enabling the enhanced performance of electrochemical actuators based on conductive polymers with designed microstructures. 展开更多
关键词 conductive polymer Soft actuator POLYANILINE PEDOT:PSS Bioinspired actuator
原文传递
Stress-dissipated conductive polymer binders for high-stability silicon anode in lithium-ion batteries
13
作者 Zhong Xu Xiang Chu +4 位作者 Keli Wang Haitao Zhang Zhongqian He Yanting Xie Weiqing Yang 《Journal of Materiomics》 SCIE CSCD 2023年第2期378-386,共9页
Silicon-based anodes with high theoretical capacity have intriguing potential applications for high energy density lithium-ion batteries(LIBs),while suffer from immense volumetric change and brittle solidstate electro... Silicon-based anodes with high theoretical capacity have intriguing potential applications for high energy density lithium-ion batteries(LIBs),while suffer from immense volumetric change and brittle solidstate electrolyte interface that causes collapse of electrodes.Here,a stress-dissipated conductive polymer binder(polyaniline with citric acid,PC)is developed to enhance the mechanical electrochemical performance between Si nanoparticles(SiNPs)and binders.Benefiting from the stable triangle network node of citric acid and a considerable distributed of hydroxyl groups,the PC binder can effectively dissipate the stress from SiNPs,thus providing an excellent cyclic stability of Si anodes.Both experimental results and theoretical calculation demonstrate the enhanced adhesion between binders and SiNPs could bond the particles tightly to form a robust electrode.The as-fabricated Si anode exhibits outstanding structural stability upon long-term cycles that exhibit a highly reversible capability of 1021 mA·h·g^(-1)over 500 cycles at a current density of 0.5 C(1 C¼4200mA·g^(-1)).Evidently,this stressdissipated binder design will provide a promising route to achieve long-life Si-based LIBs. 展开更多
关键词 conductive polymer Silicon anode BINDER Mechanical electrochemistry Lithium-ion batteries
原文传递
Highly Elastic,Bioresorbable Polymeric Materials for Stretchable,Transient Electronic Systems
14
作者 Jeong‑Woong Shin Dong‑Je Kim +12 位作者 Tae‑Min Jang Won Bae Han Joong Hoon Lee Gwan‑Jin Ko Seung Min Yang Kaveti Rajaram Sungkeun Han Heeseok Kang Jun Hyeon Lim Chan‑Hwi Eom Amay J.Bandodkar Hanul Min Suk‑Won Hwang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期1-13,共13页
Substrates or encapsulants in soft and stretchable formats are key components for transient,bioresorbable electronic systems;however,elastomeric polymers with desired mechanical and biochemical properties are very lim... Substrates or encapsulants in soft and stretchable formats are key components for transient,bioresorbable electronic systems;however,elastomeric polymers with desired mechanical and biochemical properties are very limited compared to nontransient counterparts.Here,we introduce a bioresorbable elastomer,poly(glycolide-co-ε-caprolactone)(PGCL),that contains excellent material properties including high elongation-at-break(<1300%),resilience and toughness,and tunable dissolution behaviors.Exploitation of PGCLs as polymer matrices,in combination with conducing polymers,yields stretchable,conductive composites for degradable interconnects,sensors,and actuators,which can reliably function under external strains.Integration of device components with wireless modules demonstrates elastic,transient electronic suture system with on-demand drug delivery for rapid recovery of postsurgical wounds in soft,time-dynamic tissues. 展开更多
关键词 Biodegradable elastomer conductive polymer composites Biomedical device Transient electronics
下载PDF
Alcohol-dispersed polymer complex as an effective and durable interface modifier for n-i-p perovskite solar cells
15
作者 Chang Shi Jiangling Li +8 位作者 Shuping Xiao Ziyi Wang Wuchen Xiang Rui Wu Yang Liu Yinhua Zhou Weijun Ke Guojia Fang Pingli Qin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期243-252,I0007,共11页
Abundant interfacial defects remain a significant challenge that hampers both the efficiency and stability of perovskite solar cells(PSCs).Herein,an alcohol-dispersed conducting polymer complex,denoted as PEDOT:F(Poly... Abundant interfacial defects remain a significant challenge that hampers both the efficiency and stability of perovskite solar cells(PSCs).Herein,an alcohol-dispersed conducting polymer complex,denoted as PEDOT:F(Poly(3,4-ethylene dioxythiophene):Perfluorinated sulfonic acid ionomers),is introduced into the interface between perovskite and hole transporting layer in regular-structured PSCs.PEDOT:F serves as a multi-functional interface layer(filling grain boundaries and covering perovskite's grain-surface)to achieve a robust interaction with organic groups within perovskites,which could induce a structural transformation of PEDOT to increase its conductivity for the efficient hole-transport.Furthermore,the strong interaction between PEDOT and perovskites could promote an effective coupling of undercoordinated Pb~(2+)ions with the lone electron pairs near O&S atoms in PEDOT molecules,thereby enhancing defect passivation.Additionally,PEDOT:F with inherent hydrophobic properties prevents effectively moisture invasion into perovskites for the improved long-term stability of the PSCs.Consequently,the PEDOT:F-based PSCs achieved a champion efficiency of 24.81%,and maintained ca.92%of their initial efficiency after 7680 h of storage in a dry air environment,accompanied by the enhanced photothermal stability. 展开更多
关键词 Alcohol-dispersed conducting polymer complex Interface passivation Grain boundaries Device stability Perovskite solar cells
下载PDF
Bacteriophage M13 as a Scaffold for Preparing Conductive Polymeric Composite Fibers 被引量:5
16
作者 Zhongwei Niu Michael ABruckman +2 位作者 Brandon Harp Charlene MMello Qian Wang 《Nano Research》 SCIE EI CSCD 2008年第3期235-241,共7页
Using biological templates to build one-dimensional functional materials holds great promise in developing nanosized electrical devices,sensors,catalysts,and energy storage units.In this communication,we report a vers... Using biological templates to build one-dimensional functional materials holds great promise in developing nanosized electrical devices,sensors,catalysts,and energy storage units.In this communication,we report a versatile assembly process for the preparation of water-soluble conductive polyaniline(PANi)/M13 composite nanowires by employing the bacteriophage M13 as a template.The surface lysine residues of M13 can be derivatized with carboxylic groups to improve its binding ability to the aniline;the resulting modifi ed M13 is denoted as m-M13.Highly negatively-charged poly(sulfonated styrene)was used both as a dopant acid and a stabilizing agent to enhance the stability of the composite fi bers in aqueous solution.A transparent solution of the conductive PANi/m-M13 composite fi bers can be readily obtained without any further purifi cation step.The fi bers can be easily fabricated into thin conductive fi lms due to their high aspect ratio and good solubility in aqueous solution.This synthesis discloses a unique and versatile way of using bionanorods to produce composite fi brillar materials with narrow dispersity,high aspect ratio,and high processibility,which may have many potential applications in electronics,optics,sensing,and biomedical engineering. 展开更多
关键词 Bacteriophage M13 nanofi ber conductive polymer SELF-ASSEMBLY BIOCONJUGATION
原文传递
Flexible conductive polymer composites for smart wearable strain sensors 被引量:9
17
作者 Kangkang Zhou Kun Dai +1 位作者 Chuntai Liu Changyu Shen 《SmartMat》 2020年第1期72-76,共5页
Wearable strain sensors based on flexible conductive polymer composites(FCPCs)have attracted great attention due to their applications in the fields of human–machine interaction,disease diagnostics,human motion detec... Wearable strain sensors based on flexible conductive polymer composites(FCPCs)have attracted great attention due to their applications in the fields of human–machine interaction,disease diagnostics,human motion detection,and soft robotic skin.In recent decades,FCPC‐based strain sensors with high stretchability and sensitivity,short response time,and excellent stability have been developed,which are expected to be more versatile and intelligent.Smart strain sensors are required to provide wearable comfort,such as breathability,selfcooling ability,and so forth.To adapt to the harsh environment,wearable strain sensors should also be highly adaptive to protect the skin and the sensor itself.In addition,portable power supply system,multisite sensing capability,and multifunctionality are crucial for the next generation of FCPC‐based strain sensor. 展开更多
关键词 electrically conductive properties flexible conductive polymer composites MULTIFUNCTION wearable strain sensor
原文传递
LOW POTENTIAL ELECTROPOLYMERIZATION OF ANISOTROPIC CONDUCTIVE POLYTHIOPHENE FILMS AND FABRICATION OF ELECTRICAL DEVICES 被引量:1
18
作者 Xiao-bo Wan Yun Lu +3 位作者 Xiao-rong Liu Liang Zhou Shi Jin Gi Xue Department of Polymer Science and Engineering, the State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, China 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1999年第2期99-111,共13页
The Complexation of thiophene with a Lewis acid with moderate acidity as a solvent, such as BF3-ethyl ether (BFEE) remarkedly lowered the electrochemical polymerization potential. The positively charged metal surface ... The Complexation of thiophene with a Lewis acid with moderate acidity as a solvent, such as BF3-ethyl ether (BFEE) remarkedly lowered the electrochemical polymerization potential. The positively charged metal surface of electrode in the process of electrochemical deposition enhanced the coordination interaction between pi-electrons of thiophene unit and the metal, which makes thiophene rings lie parallel to the surface of electrode, resulting in a highly ordered polymeric structure. Because of the large intra-chain transfer integrals, the transport of charge is believed to be principally along the conjugated chains, which is much greater than the inter-chain hopping. The specific electrical resistance across the polythiophene film thickness is more than 10(4) times than that along the surface plane of the film. In this paper we review the recent development of polymerization technique by low potential electrochemical method performed in our lab and several electrical devices in which the compact polythiophene films, such as anionic and cationic sieves, and laminate film junction of undoped polythiophene derivatives were used. 展开更多
关键词 conductive polymer POLYTHIOPHENE ANISOTROPY electric device film junction
下载PDF
MOF-Conductive Polymer Composite Film as Electrocatalyst for Oxygen Reduction in Acidic Media 被引量:1
19
作者 诸葛瑞雪 石鹏超 张腾 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2022年第3期62-69,I0008,共9页
A metal-organic framework(MOF)-conductive polymer composite film was constructed from PCN-222(Fe)nanoparticles and PEDOT:PSS solution by simple drop-casting approach.The composite film was tested as an electrocatalyti... A metal-organic framework(MOF)-conductive polymer composite film was constructed from PCN-222(Fe)nanoparticles and PEDOT:PSS solution by simple drop-casting approach.The composite film was tested as an electrocatalytic device for oxygen reduction reaction(ORR).The combination of PCN-222(Fe)MOF particles and conductive PEDOT matrix facilitates electron transfer in the composite material and improves the ORR performance of PCN-222(Fe).Levich plot and H_(2)O_(2)quantification experiment show that PCN-222(Fe)/PEDOT:PSS film mainly catalyzes two-electron oxygen reduction and produces H_(2)O_(2). 展开更多
关键词 metal-organic frameworks(MOFs) conductive polymer PORPHYRIN oxygen reduction reaction(ORR) ELECTROCATALYSIS
原文传递
Flexible Polydimethylsiloxane Composite with Multi-Scale Conductive Network for Ultra-Strong Electromagnetic Interference Protection 被引量:5
20
作者 Jie Li He Sun +5 位作者 Shuang-Qin Yi Kang-Kang Zou Dan Zhang Gan-Ji Zhong Ding-Xiang Yan Zhong-Ming Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期293-306,共14页
Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagne... Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagnetic interference protection of flexible electronic devices.It is extremely urgent to fabricate ultra-strong EMI shielding CPCs with efficient conductive networks.In this paper,a novel silver-plated polylactide short fiber(Ag@PL ASF,AAF) was fabricated and was integrated with carbon nanotubes(CNT) to construct a multi-scale conductive network in polydimethylsiloxane(PDMS) matrix.The multi-scale conductive network endowed the flexible PDMS/AAF/CNT composite with excellent electrical conductivity of 440 S m-1and ultra-strong EMI shielding effectiveness(EMI SE) of up to 113 dB,containing only 5.0 vol% of AAF and 3.0 vol% of CNT(11.1wt% conductive filler content).Due to its excellent flexibility,the composite still showed 94% and 90% retention rates of EMI SE even after subjected to a simulated aging strategy(60℃ for 7 days) and 10,000 bending-releasing cycles.This strategy provides an important guidance for designing excellent EMI shielding materials to protect the workspace,environment and sensitive circuits against radiation for flexible electronic devices. 展开更多
关键词 Flexible conductive polymer composites Silver-plated polylactide short fiber Carbon nanotube Electromagnetic interference shielding Multi-scale conductive network
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部