Creep damage at crack tip in short fibre composites has been sim- ulated by using the finite element method(FEM).The well-known Schapery non- linear viscoelastic constitutive relationship was used to characterize time...Creep damage at crack tip in short fibre composites has been sim- ulated by using the finite element method(FEM).The well-known Schapery non- linear viscoelastic constitutive relationship was used to characterize time-dependent behaviour of the material.A modified recurrence equation was adopted to accelerate the iteration.Kachanov-Rabotnov's damage evolution law was employed.The growth of the damage zone with time around the crack tip was calculated and the results were shown with the so-called 'digit photo',which was produced by the printer.展开更多
The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element ...The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations.展开更多
The chemical vapor infiltration process in fabrication of carbon-carbon composites is highly inefficient and requires long processing time. These limitations add considerably to the cost of fabrication and restrict th...The chemical vapor infiltration process in fabrication of carbon-carbon composites is highly inefficient and requires long processing time. These limitations add considerably to the cost of fabrication and restrict the application of this material. Efforts have been made to study the CVI process in fabrication of carbon-carbon composites by computer simulation and predict the process parameters, density, porosity, etc. According to the characteristics of CVI process, the basis principle of FEM and mass transport, the finite element model has been established. Incremental finite element equations and the elemental stiffness matrices have been derived for the first time. The finite element program developed by the authors has been used to simulate the ICVI process in fabrication of carbon-carbon composites. Computer color display of simulated results can express the densification and distributions of density and porosity in preform clearly. The influence of process parameters on the densification of preform has been analyzed. The numerically simulated and experimental results give a good agreement.展开更多
In this work, the local fracture initiation behaviour of an Al2O3/6061Al composite is studied numerically. The damage behaviour of the microstructure is evaluated in consideration of the path and the amount of damage ...In this work, the local fracture initiation behaviour of an Al2O3/6061Al composite is studied numerically. The damage behaviour of the microstructure is evaluated in consideration of the path and the amount of damage as well as the stress-strain performance of the microstructure. The damage behaviour of the ductile matrix has been simulated using the damage parameter D. For the simulation of fracture of the ceramic particles, a normal stress criterion is applied. For the analysis of the damage behaviour of the transition zone between particulate and matrix, both damage models (D parameter and normal stress criteria) are applied in this region. Parameter studies of crack propagation prediction in the Al2O3/6061Al composite on the basis of an Element Elimination technique have been performed for two differently heat-treated variants resulting in different mechanical properties. In addition, residual stress effects on the damage behaviour are examined for various microstructural situations.展开更多
We demonstrate an innovative preparation approach of diamond/Cu composites by powder-in-tube technique and rolling. A small copper tube was loaded with Ti- and Cu-coated diamond particles, mad then the diamond particl...We demonstrate an innovative preparation approach of diamond/Cu composites by powder-in-tube technique and rolling. A small copper tube was loaded with Ti- and Cu-coated diamond particles, mad then the diamond particles were combined with Cu matrix by composite rolling. The morphology and element distribution of the interface between diamond and Cu were determined by scanning electron microscopy and energy-dispersive spectrometer. Finite element method (FEM) simulation was used to analyze the rolling process associated with experiment by DEFORM-3D. The final experimental results showed that homogeneous distribution of diamond particles could be observed in the center layer of the composites. According to the contrast experiments, the sample, whose diamond particle size is 0.12-0.15 mm and thickness of pre-rolling is 1.2 mm, showed relatively complete morphologies and homogeneous distribution. Experimental results indicated a poor efficacy of excessive rolling reduction. The thermal conductivity of the composites is about 453 W (m K)-1 by theoretical calculation. For FEM simulation, roiling strain and temperature field of the composites were simulated by DEFORM-3D. Simulation results were interpreted, and numerical results verified the reliability of the model. The simulation predicted that the local area of large strain, indicative of the strain along the thickness direction, could be intensified by adding diamond particles.展开更多
We present a novel method for the solution of the diffusion equation on a composite AMR mesh. This approach is suitable for including diffusion based physics modules to hydrocodes that support ALE and AMR capabilities...We present a novel method for the solution of the diffusion equation on a composite AMR mesh. This approach is suitable for including diffusion based physics modules to hydrocodes that support ALE and AMR capabilities. To illustrate, we proffer our implementations of diffu- sion based radiation transport and heat conduction in a hydrocode called ALE-AMR. Numerical experiments conducted with the diffusion solver and associated physics packages yield 2nd order convergence in the L2 norm.展开更多
The effect of reinforcement on the solidification of pure metal matrix composites (MMCs) was simulated using a two-dimensional solidification temperature field model by the finite element method. The concept of the ch...The effect of reinforcement on the solidification of pure metal matrix composites (MMCs) was simulated using a two-dimensional solidification temperature field model by the finite element method. The concept of the character length was proposed to describe the size of reinforcement local heat influential zone in MMCs solidification according to the change of the morphologies of solid-liquid interface. The relationship between the character length and the geometrical conditions, the boundary condition and physical properties of the reinforcement were studied, respectively. The results show that the width of the unit and the cold boundary temperature have no effect on the character lengths but have effect on the distance between cold boundary and reinforcement (l) and the thermal parameters of the reinforcement. An experimental rule to predict the value of the character length was derived and applied.展开更多
The composite that can absorb the high-performance electromagnetic(EM) wave is constructed into a sandwiched structure composed of carbon black(CB)/ethylene-vinyl acetate(EVA) and Ag naowires(Ag NWs). The Ag N...The composite that can absorb the high-performance electromagnetic(EM) wave is constructed into a sandwiched structure composed of carbon black(CB)/ethylene-vinyl acetate(EVA) and Ag naowires(Ag NWs). The Ag NWs sandwiched between two CB/EVA layers are used to improve the absorption properties of composite. The effects of EVA-to-CB weight ratio, concentration and diameter of Ag NWs with a thickness of 0.4 mm on microwave absorption are investigated.The results indicate that for an EVA-to-CB weight ratio of 1:3, Ag NW concentration of 1.0 mg/100 m L, and average diameter of 56 nm, the reflection loss(RL) of the composite is below-10 d B in a frequency range of 9.3 Ghz–18.0 GHz, with the minimum values of-40.0 d B and-25.6 d B at 13.5 GHz and 15.3 GHz, respectively. A finite element method(FEM)is used for calculating the RL of the composite. The calculated results are in agreement with the experimental data.展开更多
基金The project supported by the National Natural Science Foundation of China the LNM of Institute of Mechanics,CAS
文摘Creep damage at crack tip in short fibre composites has been sim- ulated by using the finite element method(FEM).The well-known Schapery non- linear viscoelastic constitutive relationship was used to characterize time-dependent behaviour of the material.A modified recurrence equation was adopted to accelerate the iteration.Kachanov-Rabotnov's damage evolution law was employed.The growth of the damage zone with time around the crack tip was calculated and the results were shown with the so-called 'digit photo',which was produced by the printer.
基金Project supported by the National Natural Science Foundation of China (Nos. 12102043, 12072375U2241240)the Natural Science Foundation of Hunan Province of China (Nos. 2023JJ40698 and 2021JJ40710)。
文摘The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations.
文摘The chemical vapor infiltration process in fabrication of carbon-carbon composites is highly inefficient and requires long processing time. These limitations add considerably to the cost of fabrication and restrict the application of this material. Efforts have been made to study the CVI process in fabrication of carbon-carbon composites by computer simulation and predict the process parameters, density, porosity, etc. According to the characteristics of CVI process, the basis principle of FEM and mass transport, the finite element model has been established. Incremental finite element equations and the elemental stiffness matrices have been derived for the first time. The finite element program developed by the authors has been used to simulate the ICVI process in fabrication of carbon-carbon composites. Computer color display of simulated results can express the densification and distributions of density and porosity in preform clearly. The influence of process parameters on the densification of preform has been analyzed. The numerically simulated and experimental results give a good agreement.
基金the financial support from German Research Foundation(DFG),under project Schm 746/55-1
文摘In this work, the local fracture initiation behaviour of an Al2O3/6061Al composite is studied numerically. The damage behaviour of the microstructure is evaluated in consideration of the path and the amount of damage as well as the stress-strain performance of the microstructure. The damage behaviour of the ductile matrix has been simulated using the damage parameter D. For the simulation of fracture of the ceramic particles, a normal stress criterion is applied. For the analysis of the damage behaviour of the transition zone between particulate and matrix, both damage models (D parameter and normal stress criteria) are applied in this region. Parameter studies of crack propagation prediction in the Al2O3/6061Al composite on the basis of an Element Elimination technique have been performed for two differently heat-treated variants resulting in different mechanical properties. In addition, residual stress effects on the damage behaviour are examined for various microstructural situations.
基金supported by the National Nature Science Foundation of China (Nos. 51174028 and 51541406)
文摘We demonstrate an innovative preparation approach of diamond/Cu composites by powder-in-tube technique and rolling. A small copper tube was loaded with Ti- and Cu-coated diamond particles, mad then the diamond particles were combined with Cu matrix by composite rolling. The morphology and element distribution of the interface between diamond and Cu were determined by scanning electron microscopy and energy-dispersive spectrometer. Finite element method (FEM) simulation was used to analyze the rolling process associated with experiment by DEFORM-3D. The final experimental results showed that homogeneous distribution of diamond particles could be observed in the center layer of the composites. According to the contrast experiments, the sample, whose diamond particle size is 0.12-0.15 mm and thickness of pre-rolling is 1.2 mm, showed relatively complete morphologies and homogeneous distribution. Experimental results indicated a poor efficacy of excessive rolling reduction. The thermal conductivity of the composites is about 453 W (m K)-1 by theoretical calculation. For FEM simulation, roiling strain and temperature field of the composites were simulated by DEFORM-3D. Simulation results were interpreted, and numerical results verified the reliability of the model. The simulation predicted that the local area of large strain, indicative of the strain along the thickness direction, could be intensified by adding diamond particles.
基金the auspices of the U.S.Department of Energy by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344LBNL under DE-AC0205CH11231 was supported by the Director,Office ofScience of the U.S.Department of Energy and the Petascale Initiative in Computational Science and Engineeringthe National Energy Research Scientific Computing Center,supported by the Office of Science,U.S.Department of Energy under Contract No.DE-AC02-05CH11231.
文摘We present a novel method for the solution of the diffusion equation on a composite AMR mesh. This approach is suitable for including diffusion based physics modules to hydrocodes that support ALE and AMR capabilities. To illustrate, we proffer our implementations of diffu- sion based radiation transport and heat conduction in a hydrocode called ALE-AMR. Numerical experiments conducted with the diffusion solver and associated physics packages yield 2nd order convergence in the L2 norm.
文摘The effect of reinforcement on the solidification of pure metal matrix composites (MMCs) was simulated using a two-dimensional solidification temperature field model by the finite element method. The concept of the character length was proposed to describe the size of reinforcement local heat influential zone in MMCs solidification according to the change of the morphologies of solid-liquid interface. The relationship between the character length and the geometrical conditions, the boundary condition and physical properties of the reinforcement were studied, respectively. The results show that the width of the unit and the cold boundary temperature have no effect on the character lengths but have effect on the distance between cold boundary and reinforcement (l) and the thermal parameters of the reinforcement. An experimental rule to predict the value of the character length was derived and applied.
基金Project partly supported by the National Natural Science Foundation of China(Grant No.61275174)
文摘The composite that can absorb the high-performance electromagnetic(EM) wave is constructed into a sandwiched structure composed of carbon black(CB)/ethylene-vinyl acetate(EVA) and Ag naowires(Ag NWs). The Ag NWs sandwiched between two CB/EVA layers are used to improve the absorption properties of composite. The effects of EVA-to-CB weight ratio, concentration and diameter of Ag NWs with a thickness of 0.4 mm on microwave absorption are investigated.The results indicate that for an EVA-to-CB weight ratio of 1:3, Ag NW concentration of 1.0 mg/100 m L, and average diameter of 56 nm, the reflection loss(RL) of the composite is below-10 d B in a frequency range of 9.3 Ghz–18.0 GHz, with the minimum values of-40.0 d B and-25.6 d B at 13.5 GHz and 15.3 GHz, respectively. A finite element method(FEM)is used for calculating the RL of the composite. The calculated results are in agreement with the experimental data.