In this paper, we introduce the concept of generalized g-quasi-contractions in the setting of cone b-metric spaces over Banach algebras. By omitting the assump- tion of normality we establish common fixed point theore...In this paper, we introduce the concept of generalized g-quasi-contractions in the setting of cone b-metric spaces over Banach algebras. By omitting the assump- tion of normality we establish common fixed point theorems for the generalized g- quasi-contractions with the spectral radius r(λ) of the g-quasi-contractive constant vector λ satisfying r(λ) ∈[0,1) in the setting of cone b-metric spaces over Banach al- gebras, where the coefficient s satisfies s ≥ 1. The main results generalize, extend and unify several well-known comparable results in the literature.展开更多
The purpose of this paper is to improve some famous theorems for contractive mapping from ρ(α + β) ∈ [0,1/s) to ρ(α + β) ∈ [0, 1) in ordered cone b-metric spaces over Banach algebras with coefficient s ≥ 1(ρ...The purpose of this paper is to improve some famous theorems for contractive mapping from ρ(α + β) ∈ [0,1/s) to ρ(α + β) ∈ [0, 1) in ordered cone b-metric spaces over Banach algebras with coefficient s ≥ 1(ρ(x) is the spectral radius of the generalized Lipschitz constant x). Moreover, some similar improvements in ordered cone b-metric spaces are also obtained, which from α + β∈ [0,1/s) to α + β∈ [0, 1). Some examples are given to support that our new results are genuine improvements and generalizations.展开更多
In this paper,we introduce the notion of generalized cyclic contraction pairs in b2-metric spaces and establish some fixed point theorems for such pairs.Then,we give an example to illustrate our results.
In this paper we develop the Banach contraction principle and Kannan fixed point theorem on generalized cone metric spaces. We prove a version of Suzuki and Kannan type generalizations of fixed point theorems in gener...In this paper we develop the Banach contraction principle and Kannan fixed point theorem on generalized cone metric spaces. We prove a version of Suzuki and Kannan type generalizations of fixed point theorems in generalized cone metric spaces.展开更多
基金supported by the National Natural Science Foundation of China(No.11361064)the project No.174024 of the Ministry of Education,Science and Technological Department of the Republic of Serbia
文摘In this paper, we introduce the concept of generalized g-quasi-contractions in the setting of cone b-metric spaces over Banach algebras. By omitting the assump- tion of normality we establish common fixed point theorems for the generalized g- quasi-contractions with the spectral radius r(λ) of the g-quasi-contractive constant vector λ satisfying r(λ) ∈[0,1) in the setting of cone b-metric spaces over Banach al- gebras, where the coefficient s satisfies s ≥ 1. The main results generalize, extend and unify several well-known comparable results in the literature.
基金Supported by Yunnan Applied Basic Research Projects(2016FD082)Guiding project of Scientific Research Fund of Yunnan Provincial Education Department(2016ZDX151)
文摘The purpose of this paper is to improve some famous theorems for contractive mapping from ρ(α + β) ∈ [0,1/s) to ρ(α + β) ∈ [0, 1) in ordered cone b-metric spaces over Banach algebras with coefficient s ≥ 1(ρ(x) is the spectral radius of the generalized Lipschitz constant x). Moreover, some similar improvements in ordered cone b-metric spaces are also obtained, which from α + β∈ [0,1/s) to α + β∈ [0, 1). Some examples are given to support that our new results are genuine improvements and generalizations.
文摘In this paper,we introduce the notion of generalized cyclic contraction pairs in b2-metric spaces and establish some fixed point theorems for such pairs.Then,we give an example to illustrate our results.
文摘In this paper we develop the Banach contraction principle and Kannan fixed point theorem on generalized cone metric spaces. We prove a version of Suzuki and Kannan type generalizations of fixed point theorems in generalized cone metric spaces.