In this paper,we obtain some tripled common random fixed point and tripled random fixed point theorems with several generalized Lipschitz constants in such spaces.We consider the obtained assertions without the assump...In this paper,we obtain some tripled common random fixed point and tripled random fixed point theorems with several generalized Lipschitz constants in such spaces.We consider the obtained assertions without the assumption of normality of cones.The presented results generalize some coupled common fixed point theorems in the existing literature.展开更多
In this work, we introduce a few versions of Caristi’s fixed point theorems in G-cone metric spaces which extend Caristi’s fixed point theorems in metric spaces. Analogues of such fixed point theorems are proved in ...In this work, we introduce a few versions of Caristi’s fixed point theorems in G-cone metric spaces which extend Caristi’s fixed point theorems in metric spaces. Analogues of such fixed point theorems are proved in this space. Our work extends a good number of results in this area of research.展开更多
In order to develop and improve the fixed point theorems in cone metric spaces, some new fixed point theorems are presented for two mappings in cone metric spaces which satisfy contractive conditions, where the cone i...In order to develop and improve the fixed point theorems in cone metric spaces, some new fixed point theorems are presented for two mappings in cone metric spaces which satisfy contractive conditions, where the cone is not necessarily normal. Our results generalize fixed point theorems of Abbas, Jungck and Stojan Radenovi in cone metric spaces.展开更多
Some common fixed point results for mappings satisfying a quasi-contractive condition which involves altering distance functions are obtained in partially ordered complete cone metric spaces. A sufficient condition fo...Some common fixed point results for mappings satisfying a quasi-contractive condition which involves altering distance functions are obtained in partially ordered complete cone metric spaces. A sufficient condition for the uniqueness of common fixed point is proved. Also, an example is given to support our results.展开更多
In this paper, we consider a countable family of surjective mappings {Tn}n∈N satisfying certain quasi-contractive conditions. We also construct a convergent sequence { Xn } n c∈Nby the quasi-contractive conditions o...In this paper, we consider a countable family of surjective mappings {Tn}n∈N satisfying certain quasi-contractive conditions. We also construct a convergent sequence { Xn } n c∈Nby the quasi-contractive conditions of { Tn } n ∈N and the boundary condition of a given complete and closed subset of a cone metric space X with convex structure, and then prove that the unique limit x" of {xn}n∈N is the unique common fixed point of {Tn}n∈N. Finally, we will give more generalized common fixed point theorem for mappings {Ti,j}i,j∈N. The main theorems in this paper generalize and improve many known common fixed point theorems for a finite or countable family of mappings with quasi-contractive conditions.展开更多
A new common fixed point result for a countable family of non-self mappings defined on a closed subset of a cone metric space with the convex property is obtained, and from which, a more general result is given. Our m...A new common fixed point result for a countable family of non-self mappings defined on a closed subset of a cone metric space with the convex property is obtained, and from which, a more general result is given. Our main results improve and generalize many known common fixed point theorems.展开更多
A new unique common fixed point result for a pair of mappings satisfying certain quasi-Lipschitz type conditions on a topological vector space-valued cone metric space is obtained, and its particular forms and a more ...A new unique common fixed point result for a pair of mappings satisfying certain quasi-Lipschitz type conditions on a topological vector space-valued cone metric space is obtained, and its particular forms and a more general form are given. Our main results generalize and improve some well-known recent results in the literature.展开更多
In this paper, we consider a notion of contractive mappings with certain conditions in cone metric spaces and obtain some results of fixed points by using some necessary conditions. The results directly improve and ge...In this paper, we consider a notion of contractive mappings with certain conditions in cone metric spaces and obtain some results of fixed points by using some necessary conditions. The results directly improve and generalize some fixed point results in metric soaces and some previous results in cone metric spaces.展开更多
In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive ...In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74-79] and a result of Suzuki [T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313-5317]. We prove, also, a fixed point theorem in the setting of G-cone metric spaces.展开更多
In this paper we develop the Banach contraction principle and Kannan fixed point theorem on generalized cone metric spaces. We prove a version of Suzuki and Kannan type generalizations of fixed point theorems in gener...In this paper we develop the Banach contraction principle and Kannan fixed point theorem on generalized cone metric spaces. We prove a version of Suzuki and Kannan type generalizations of fixed point theorems in generalized cone metric spaces.展开更多
In this paper, some new existence and uniqueness of common fixed points for four mappings are obtained, which do not satisfy continuity and commutation on non-normal cone metric spaces. These results improve and gener...In this paper, some new existence and uniqueness of common fixed points for four mappings are obtained, which do not satisfy continuity and commutation on non-normal cone metric spaces. These results improve and generalize several well-known comparable results in the literature.展开更多
In this paper, we use the mappings with quasi-contractive conditions, defined on a partially ordered set with cone metric structure, to construct convergent sequences and prove that the limits of the constructed seque...In this paper, we use the mappings with quasi-contractive conditions, defined on a partially ordered set with cone metric structure, to construct convergent sequences and prove that the limits of the constructed sequences are the unique (common) fixed point of the mappings, and give their corollaries. The obtained results improve and generalize the corresponding conclusions in references.展开更多
In this paper, we introduce the concept of generalized g-quasi-contractions in the setting of cone b-metric spaces over Banach algebras. By omitting the assump- tion of normality we establish common fixed point theore...In this paper, we introduce the concept of generalized g-quasi-contractions in the setting of cone b-metric spaces over Banach algebras. By omitting the assump- tion of normality we establish common fixed point theorems for the generalized g- quasi-contractions with the spectral radius r(λ) of the g-quasi-contractive constant vector λ satisfying r(λ) ∈[0,1) in the setting of cone b-metric spaces over Banach al- gebras, where the coefficient s satisfies s ≥ 1. The main results generalize, extend and unify several well-known comparable results in the literature.展开更多
In this paper, some new existence and uniqueness of common fixed points for three mappings of Lipschitz type are obtained. The conditions are greatly weaker than the classic conditions in cone metric spaces. These res...In this paper, some new existence and uniqueness of common fixed points for three mappings of Lipschitz type are obtained. The conditions are greatly weaker than the classic conditions in cone metric spaces. These results improve and generalize several wellknown comparable results in the literature. Moreover, our results are supported by some examples.展开更多
In this paper, some topological concepts and definitions are generalized to cone metric spaces. It is proved that every cone metric space is first countable topological space and that sequentially compact subsets axe ...In this paper, some topological concepts and definitions are generalized to cone metric spaces. It is proved that every cone metric space is first countable topological space and that sequentially compact subsets axe compact. Also, we define diametrically contractive mappings and asymptotically diametrically contractive mappings on cone metric spaces to obtain some fixed point theorems by assuming that our cone is strongly minihedral.展开更多
In this paper,the generalized Kannan-type contraction in cone metric spaces over Banach algebras is introduced.The fixed point theorems satisfying generalized contractive conditions are obtained,without appealing to c...In this paper,the generalized Kannan-type contraction in cone metric spaces over Banach algebras is introduced.The fixed point theorems satisfying generalized contractive conditions are obtained,without appealing to completeness of X or normality of the cone.The continuity of the mapping is relaxed.Furthermore,we prove that the completeness in cone metric spaces over Banach algebras is necessary if the generalized Kannan-type contraction has a fixed point in X.These results greatly generalize several well-known comparable results in the literature.展开更多
In this paper, the author first introduces the concept of generalized algebraic cone metric spaces and some elementary results concerning generalized algebraic cone metric spaces. Next, by using these results, some ne...In this paper, the author first introduces the concept of generalized algebraic cone metric spaces and some elementary results concerning generalized algebraic cone metric spaces. Next, by using these results, some new fixed point theorems on generalized(complete) algebraic cone metric spaces are proved and an example is given. As a consequence, the main results generalize the corresponding results in complete algebraic cone metric spaces and generalized complete metric spaces.展开更多
In this paper, we give some new results of common fixed point theorems and coincidence point case for some iterative method. By using of variation iteration method and an effective modification of He’s variation iter...In this paper, we give some new results of common fixed point theorems and coincidence point case for some iterative method. By using of variation iteration method and an effective modification of He’s variation iteration method discusses some integral and differential equations, we give out some new conclusion and more new examples.展开更多
基金supported by the Foundation of Education Ministry,Hubei Province,China(Q20122203)
文摘In this paper,we obtain some tripled common random fixed point and tripled random fixed point theorems with several generalized Lipschitz constants in such spaces.We consider the obtained assertions without the assumption of normality of cones.The presented results generalize some coupled common fixed point theorems in the existing literature.
文摘In this work, we introduce a few versions of Caristi’s fixed point theorems in G-cone metric spaces which extend Caristi’s fixed point theorems in metric spaces. Analogues of such fixed point theorems are proved in this space. Our work extends a good number of results in this area of research.
基金Foundation item: Supported by the NNSF of China(10771212) Supported by the Natural Science Foundation of Xuzhou Normal University(09KLB03)
文摘In order to develop and improve the fixed point theorems in cone metric spaces, some new fixed point theorems are presented for two mappings in cone metric spaces which satisfy contractive conditions, where the cone is not necessarily normal. Our results generalize fixed point theorems of Abbas, Jungck and Stojan Radenovi in cone metric spaces.
基金Supported by the National Natural Science Foundation of China(11271293)
文摘Some common fixed point results for mappings satisfying a quasi-contractive condition which involves altering distance functions are obtained in partially ordered complete cone metric spaces. A sufficient condition for the uniqueness of common fixed point is proved. Also, an example is given to support our results.
基金supported by the National Natural Science Foundation of China (No. 11261062 and No. 11361064)
文摘In this paper, we consider a countable family of surjective mappings {Tn}n∈N satisfying certain quasi-contractive conditions. We also construct a convergent sequence { Xn } n c∈Nby the quasi-contractive conditions of { Tn } n ∈N and the boundary condition of a given complete and closed subset of a cone metric space X with convex structure, and then prove that the unique limit x" of {xn}n∈N is the unique common fixed point of {Tn}n∈N. Finally, we will give more generalized common fixed point theorem for mappings {Ti,j}i,j∈N. The main theorems in this paper generalize and improve many known common fixed point theorems for a finite or countable family of mappings with quasi-contractive conditions.
基金Foundation item: Supported by the National Natural Science Foundation of China(11361064)
文摘A new common fixed point result for a countable family of non-self mappings defined on a closed subset of a cone metric space with the convex property is obtained, and from which, a more general result is given. Our main results improve and generalize many known common fixed point theorems.
基金Supported by the National Natural Science Foundation of China(11361064)
文摘A new unique common fixed point result for a pair of mappings satisfying certain quasi-Lipschitz type conditions on a topological vector space-valued cone metric space is obtained, and its particular forms and a more general form are given. Our main results generalize and improve some well-known recent results in the literature.
基金Supported by the Graduate Initial Fund of Hubei Normal University(2008D36)Supported by the Foundation of Education Ministry of Hubei Province(D20102502)
文摘In this paper, we consider a notion of contractive mappings with certain conditions in cone metric spaces and obtain some results of fixed points by using some necessary conditions. The results directly improve and generalize some fixed point results in metric soaces and some previous results in cone metric spaces.
基金supported by Università degli Studi di Palermo (Local University Project ex 60%)
文摘In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74-79] and a result of Suzuki [T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313-5317]. We prove, also, a fixed point theorem in the setting of G-cone metric spaces.
文摘In this paper we develop the Banach contraction principle and Kannan fixed point theorem on generalized cone metric spaces. We prove a version of Suzuki and Kannan type generalizations of fixed point theorems in generalized cone metric spaces.
文摘In this paper, some new existence and uniqueness of common fixed points for four mappings are obtained, which do not satisfy continuity and commutation on non-normal cone metric spaces. These results improve and generalize several well-known comparable results in the literature.
文摘In this paper, we use the mappings with quasi-contractive conditions, defined on a partially ordered set with cone metric structure, to construct convergent sequences and prove that the limits of the constructed sequences are the unique (common) fixed point of the mappings, and give their corollaries. The obtained results improve and generalize the corresponding conclusions in references.
基金supported by the National Natural Science Foundation of China(No.11361064)the project No.174024 of the Ministry of Education,Science and Technological Department of the Republic of Serbia
文摘In this paper, we introduce the concept of generalized g-quasi-contractions in the setting of cone b-metric spaces over Banach algebras. By omitting the assump- tion of normality we establish common fixed point theorems for the generalized g- quasi-contractions with the spectral radius r(λ) of the g-quasi-contractive constant vector λ satisfying r(λ) ∈[0,1) in the setting of cone b-metric spaces over Banach al- gebras, where the coefficient s satisfies s ≥ 1. The main results generalize, extend and unify several well-known comparable results in the literature.
基金Supported by the Foundation of Education Ministry of Hubei Province(D20102502)
文摘In this paper, some new existence and uniqueness of common fixed points for three mappings of Lipschitz type are obtained. The conditions are greatly weaker than the classic conditions in cone metric spaces. These results improve and generalize several wellknown comparable results in the literature. Moreover, our results are supported by some examples.
基金Supported by the Scientific and Technological Research Council of Turkey (TUBITAK-Turkey)
文摘In this paper, some topological concepts and definitions are generalized to cone metric spaces. It is proved that every cone metric space is first countable topological space and that sequentially compact subsets axe compact. Also, we define diametrically contractive mappings and asymptotically diametrically contractive mappings on cone metric spaces to obtain some fixed point theorems by assuming that our cone is strongly minihedral.
基金Supported by the Special Basic Cooperative Research Programs of Yunnan Provincial Undergraduate Universities'Association(202101BA070001-045)the Science and Technology Development Fund,Macao SAR(0019/2021/A1).
文摘In this paper,the generalized Kannan-type contraction in cone metric spaces over Banach algebras is introduced.The fixed point theorems satisfying generalized contractive conditions are obtained,without appealing to completeness of X or normality of the cone.The continuity of the mapping is relaxed.Furthermore,we prove that the completeness in cone metric spaces over Banach algebras is necessary if the generalized Kannan-type contraction has a fixed point in X.These results greatly generalize several well-known comparable results in the literature.
基金supported by the National Natural Science Foundation of China(Nos.11871303,11371222,11271224)the China Postdoctoral Science Foundation(No.2018M642633)A Project of Shandong Province Higher Educational Science and Technology Program(No.J18KA238)
文摘In this paper, the author first introduces the concept of generalized algebraic cone metric spaces and some elementary results concerning generalized algebraic cone metric spaces. Next, by using these results, some new fixed point theorems on generalized(complete) algebraic cone metric spaces are proved and an example is given. As a consequence, the main results generalize the corresponding results in complete algebraic cone metric spaces and generalized complete metric spaces.
文摘In this paper, we give some new results of common fixed point theorems and coincidence point case for some iterative method. By using of variation iteration method and an effective modification of He’s variation iteration method discusses some integral and differential equations, we give out some new conclusion and more new examples.