Down-hole tubular string buckling is the most classic and complex part of tubular string mechanics in well engineering. Studies of down-hole tubular string buckling not only have theoretical significance in revealing ...Down-hole tubular string buckling is the most classic and complex part of tubular string mechanics in well engineering. Studies of down-hole tubular string buckling not only have theoretical significance in revealing the buckling mechanism but also have prominent practical value in design and control of tubular strings. In this review, the basic principles and applicable scope of three classic research methods (the beam-column model, buck- ling differential equation, and energy method) are intro- duced. The critical buckling loads and the post-buckling behavior under different buckling modes in vertical, inclined, horizontal, and curved wellbores from different researchers are presented and compared. The current understanding of the effects of torque, boundary condi- tions, friction force, and connectors on down-hole tubular string buckling is illustrated. Meanwhile, some unsolved problems and controversial conclusions are discussed. Future research should be focused on sophisticated description of buckling behavior and the coupling effect of multiple factors. In addition, active control of down-hole tubular string buckling behavior needs some attention urgently.展开更多
We have simulated the processes of transient reconnection at the nightside magnetopause by using a two-dimensional compressible MHD model.According to the simulation results,three types of global reconnection configur...We have simulated the processes of transient reconnection at the nightside magnetopause by using a two-dimensional compressible MHD model.According to the simulation results,three types of global reconnection configuration at the magnetopause are proposed.The main results are summarized as follows.展开更多
基金the financial support from the Natural Science Foundation of China (NSFC,51221003,U1262201)the Science Foundation of China University of Petroleum,Beijing (No.00000)supported by other projects (Grant Numbers:2014A-4214,2013AA064803,2011ZX05009-005)
文摘Down-hole tubular string buckling is the most classic and complex part of tubular string mechanics in well engineering. Studies of down-hole tubular string buckling not only have theoretical significance in revealing the buckling mechanism but also have prominent practical value in design and control of tubular strings. In this review, the basic principles and applicable scope of three classic research methods (the beam-column model, buck- ling differential equation, and energy method) are intro- duced. The critical buckling loads and the post-buckling behavior under different buckling modes in vertical, inclined, horizontal, and curved wellbores from different researchers are presented and compared. The current understanding of the effects of torque, boundary condi- tions, friction force, and connectors on down-hole tubular string buckling is illustrated. Meanwhile, some unsolved problems and controversial conclusions are discussed. Future research should be focused on sophisticated description of buckling behavior and the coupling effect of multiple factors. In addition, active control of down-hole tubular string buckling behavior needs some attention urgently.
文摘We have simulated the processes of transient reconnection at the nightside magnetopause by using a two-dimensional compressible MHD model.According to the simulation results,three types of global reconnection configuration at the magnetopause are proposed.The main results are summarized as follows.