A fractional-order thermo-elastic model taking into account the small-scale effects of the thermo-elastic coupled behavior is developed to study the free vibration of a higher-order shear microplate.The nonlocal strai...A fractional-order thermo-elastic model taking into account the small-scale effects of the thermo-elastic coupled behavior is developed to study the free vibration of a higher-order shear microplate.The nonlocal strain gradient theory is modified with the introduction of the fractional-order derivatives and the nonlocal characteristic length.The Fourier heat conduction is replaced by the non-Fourier heat conduction with the introduction of the fractional order and the memory characteristic time.Numerical calculations are performed to analyze the effects of the nonlocal strain gradient parameters,the spatiotemporal fractional order,the nonlocal characteristic length,and the memory characteristic time on the natural frequencies,the vibration attenuation,and the phase shift between the temperature field and the displacement field.The numerical results show that the new thermo-elastic model with the spatiotemporal fractional order can provide more exquisite descriptions of the thermo-elastic behavior at a small scale.展开更多
We study two generalized versions of a system of equations which describe the time evolution of the hydrodynamic fluctuations of density and velocity in a linear viscoelastic fluid. In the first of these versions, the...We study two generalized versions of a system of equations which describe the time evolution of the hydrodynamic fluctuations of density and velocity in a linear viscoelastic fluid. In the first of these versions, the time derivatives are replaced by conformable derivatives, and in the second version left-handed Caputo’s derivatives are used. We show that the solutions obtained with these two types of derivatives exhibit significant similarities, which is an interesting (and somewhat surprising) result, taking into account that the conformable derivatives are local operators, while Caputo’s derivatives are nonlocal operators. We also show that the solutions of the generalized systems are similar to the solutions of the original system, if the order α of the new derivatives (conformable or Caputo) is less than one. On the other hand, when α is greater than one, the solutions of the generalized systems are qualitatively different from the solutions of the original system.展开更多
The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties o...The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system and combined with the improved MH-NMSS-PSO parameter estimation method to fit the real data of Delhi, India from April 1, 2020 to June 30, 2020. The results show that the fitting effect is quite ideal. Finally, long-term predictions were made on the number of infections. We accurately estimate that the peak number of infections in Delhi, India, can reach around 2.1 million. This paper also compares the fitting performance of the integer-order COVID-19 model and the fractional-order COVID-19 model using the real data from Delhi. The results indicate that the fractional-order model with different orders, as we proposed, performs the best.展开更多
Invariant conditions for conformable fractional problems of the calculus of variations under the presence of external forces in the dynamics are studied. Depending on the type of transformations considered, different ...Invariant conditions for conformable fractional problems of the calculus of variations under the presence of external forces in the dynamics are studied. Depending on the type of transformations considered, different necessary conditions of invariance are obtained. As particular cases, we prove fractional versions of Noether's symmetry theorem. Invariant conditions for fractional optimal control problems, using the Hamiltonian formalism, are also investigated. As an example of potential application in Physics, we show that with conformable derivatives it is possible to formulate an Action Principle for particles under frictional forces that is far simpler than the one obtained with classical fractional derivatives.展开更多
In this paper, we present the fractional Hamilton's canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. First/y, the exchanging relationship betwe...In this paper, we present the fractional Hamilton's canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. First/y, the exchanging relationship between isochronous variation and fractional derivatives, and the fractional Hamilton principle of the system under this fractional derivative are proposed. Secondly, the fractional Hamilton's canonical equations of Hamilton systems based on the Hamilton principle are established. Thirdly, the fractional non-Noether symmetries, non-Noether theorem and non-Noether conserved quantities for the Hamilton systems with the conformable fractional derivatives are obtained. Finally, an example is given to illustrate the results.展开更多
We deal with the Wick-type stochastic fractional Korteweg de–Vries(KdV) equation with conformable derivatives.With the aid of the Exp-function method, white noise theory, and Hermite transform, we produce a novel set...We deal with the Wick-type stochastic fractional Korteweg de–Vries(KdV) equation with conformable derivatives.With the aid of the Exp-function method, white noise theory, and Hermite transform, we produce a novel set of exact soliton and periodic wave solutions to the fractional KdV equation with conformable derivatives. With the help of inverse Hermite transform, we get stochastic soliton and periodic wave solutions of the Wick-type stochastic fractional KdV equation with conformable derivatives. Eventually, by an application example, we show how the stochastic solutions can be given as Brownian motion functional solutions.展开更多
A class of nonlinear fractional differential equations with conformable fractional differential derivatives is studied. Firstly, Green's function and its properties are given. Secondly, some new existence and mult...A class of nonlinear fractional differential equations with conformable fractional differential derivatives is studied. Firstly, Green's function and its properties are given. Secondly, some new existence and multiplicity conditions of positive solutions are obtained by the use of Leggett-Williams fixed-point theorems on cone.展开更多
In this paper, we introduce and investigate the concept of conformable delta fractional derivative on time scales. By using the theory of time scales, we obtain some basic properties of the conformable delta fractiona...In this paper, we introduce and investigate the concept of conformable delta fractional derivative on time scales. By using the theory of time scales, we obtain some basic properties of the conformable delta fractional derivative. Our results extend and improve both the results in [9] and the usual delta derivative.展开更多
This article aims to address the global exponential synchronization problem for fractional-order complex dynamical networks(FCDNs)with derivative couplings and impulse effects via designing an appropriate feedback con...This article aims to address the global exponential synchronization problem for fractional-order complex dynamical networks(FCDNs)with derivative couplings and impulse effects via designing an appropriate feedback control based on discrete time state observations.In contrast to the existing works on integer-order derivative couplings,fractional derivative couplings are introduced into FCDNs.First,a useful lemma with respect to the relationship between the discrete time observations term and a continuous term is developed.Second,by utilizing an inequality technique and auxiliary functions,the rigorous global exponential synchronization analysis is given and synchronization criterions are achieved in terms of linear matrix inequalities(LMIs).Finally,two examples are provided to illustrate the correctness of the obtained results.展开更多
We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their...We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their solutions.As an application,we derive a finite time stability result using the representation of solutions and a norm estimation of the conformable delayedmatrix functions.The obtained results are new,and they extend and improve some existing ones.Finally,an example is presented to illustrate the validity of our theoretical results.展开更多
We investigate the fractional heat equation with fractional translation in both time and position with different fractional orders.As examples,we consider a rod and anα-disk with an initial constant temperature and d...We investigate the fractional heat equation with fractional translation in both time and position with different fractional orders.As examples,we consider a rod and anα-disk with an initial constant temperature and discuss their cooling processes in the examined formalism.展开更多
This study considers a nonlinear grey Bernoulli forecasting model with conformable fractionalorder accumulation,abbreviated as CFNGBM(1,1,λ),to study the gross regional product in the ChengYu area.The new model conta...This study considers a nonlinear grey Bernoulli forecasting model with conformable fractionalorder accumulation,abbreviated as CFNGBM(1,1,λ),to study the gross regional product in the ChengYu area.The new model contains three nonlinear parameters,the power exponentγ,the conformable fractional-orderαand the background valueλ,which increase the adjustability and flexibility of the CFNGBM(1,1,λ)model.Nonlinear parameters are determined by the moth flame optimization algorithm,which minimizes the mean absolute prediction percentage error.The CFNGBM(1,1,λ)model is applied to the gross regional product of 16 cities in the Cheng-Yu area,which are Chongqing,Chengdu,Mianyang,Leshan,Zigong,Deyang,Meishan,Luzhou,Suining,Neijiang,Nanchong,Guang’an,Yibin,Ya’an,Dazhou and Ziyang.With data from 2013 to 2021,several grey models are established and results show that the new model has higher accuracy in most cases.展开更多
This paper proposes a novel unified visco-plastic constitutive model for uniaxial ratcheting behaviors. The cyclic deformation of the material presents remarkable time-dependence and history memory phenomena. The frac...This paper proposes a novel unified visco-plastic constitutive model for uniaxial ratcheting behaviors. The cyclic deformation of the material presents remarkable time-dependence and history memory phenomena. The fractional(fractional-order)derivative is an efficient tool for modeling these phenomena. Therefore, we develop a cyclic fractional-order unified visco-plastic(FVP) constitutive model. Specifically, within the framework of the cyclic elasto-plastic theory, the fractional derivative is used to describe the accumulated plastic strain rate and nonlinear kinematic hardening rule based on the Ohno-Abdel-Karim model. Moreover, a new radial return method for the back stress is developed to describe the unclosed hysteresis loops of the stress-strain properly.The capacity of the FVP model used to predict the cyclic deformation of the SS304 stainless steel is verified through a comparison with the corresponding experimental data found in the literature(KANG, G. Z., KAN, Q. H., ZHANG, J., and SUN, Y. F. Timedependent ratcheting experiments of SS304 stainless steel. International Journal of Plasticity, 22(5), 858–894(2006)). The FVP model is shown to be successful in predicting the rate-dependent ratcheting behaviors of the SS304 stainless steel.展开更多
In this article,several theorems of fractional conformable derivatives and triple Sumudu transform are given and proved.Based on these theorems,a new conformable triple Sumudu decomposition method(CTSDM)is intrduced f...In this article,several theorems of fractional conformable derivatives and triple Sumudu transform are given and proved.Based on these theorems,a new conformable triple Sumudu decomposition method(CTSDM)is intrduced for the solution of singular two-dimensional conformable functional Burger's equation.This method is a combination of the decomposition method(DM)and Conformable triple Sumudu transform.The exact and approximation solutions obtained by using the suggested method in the sense of conformable.Particular examples are given to clarify the possible application of the achieved results and the exact and approximate solution are sketched by using Matlab software.展开更多
In this paper, we investigate the nonlinear neutral fractional integral-differential equation involving conformable fractional derivative and integral. First of all, we give the form of the solution by lemma. Furtherm...In this paper, we investigate the nonlinear neutral fractional integral-differential equation involving conformable fractional derivative and integral. First of all, we give the form of the solution by lemma. Furthermore, existence results for the solution and sufficient conditions for uniqueness solution are given by the Leray-Schauder nonlinear alternative and Banach contraction mapping principle. Finally, an example is provided to show the application of results.展开更多
The Strebel point is a TeichmOller equivalence class in the Teichmuller space that has a certain rigidity in the extremality of the maximal dilatation. In this paper, we give a sufficient condition in terms of the Sch...The Strebel point is a TeichmOller equivalence class in the Teichmuller space that has a certain rigidity in the extremality of the maximal dilatation. In this paper, we give a sufficient condition in terms of the Schwarzian derivative for a Teichmuller equivalence class of the universal Teichmuller space under which the class is a Strebel point. As an application, we construct a Teichmuller equivalence class that is a Strebel point and that is not an asymptotically conformal class.展开更多
The complex derivative D^α±jβ, with α, β ∈ R+ is a generalization of the concept of integer derivative, where α = 1,β = 0. Fractional-order electric elements and circuits are becoming more and more attrac...The complex derivative D^α±jβ, with α, β ∈ R+ is a generalization of the concept of integer derivative, where α = 1,β = 0. Fractional-order electric elements and circuits are becoming more and more attractive. In this paper, the complexorder electric elements concept is proposed for the first time, and the complex-order elements are modeled and analyzed.Some interesting phenomena are found that the real part of the order affects the phase of output signal, and the imaginary part affects the amplitude for both the complex-order capacitor and complex-order memristor. More interesting is that the complex-order capacitor can do well at the time of fitting electrochemistry impedance spectra. The complex-order memristor is also analyzed. The area inside the hysteresis loops increases with the increasing of the imaginary part of the order and decreases with the increasing of the real part. Some complex case of complex-order memristors hysteresis loops are analyzed at last, whose loop has touching points beyond the origin of the coordinate system.展开更多
The nonlinear conformable time-fractional Zoomeron equation is an important mod-el to describe the evolution of a single scalar field.In this paper,new exact solutions of con-formable time-fractional Zoomeron equation...The nonlinear conformable time-fractional Zoomeron equation is an important mod-el to describe the evolution of a single scalar field.In this paper,new exact solutions of con-formable time-fractional Zoomeron equation are constructed using the Improved Bernoulli Sub-Equation Function Method(IBSEFM).According to the parameters,3D and 2D figures of the solutions are plotted by the aid of Mathematics software.The results show that IBSEFM is an efficient mathematical tool to solve nonlinear conformable time-fractional equations arising in mathematical physics and nonlinear optics.展开更多
基金the National Natural Science Foundation of China(Nos.12072022 and 11872105)the Fundamental Research Funds for the Central Universities(Nos.FRF-TW-2018-005 and FRF-BR-18-008B)。
文摘A fractional-order thermo-elastic model taking into account the small-scale effects of the thermo-elastic coupled behavior is developed to study the free vibration of a higher-order shear microplate.The nonlocal strain gradient theory is modified with the introduction of the fractional-order derivatives and the nonlocal characteristic length.The Fourier heat conduction is replaced by the non-Fourier heat conduction with the introduction of the fractional order and the memory characteristic time.Numerical calculations are performed to analyze the effects of the nonlocal strain gradient parameters,the spatiotemporal fractional order,the nonlocal characteristic length,and the memory characteristic time on the natural frequencies,the vibration attenuation,and the phase shift between the temperature field and the displacement field.The numerical results show that the new thermo-elastic model with the spatiotemporal fractional order can provide more exquisite descriptions of the thermo-elastic behavior at a small scale.
文摘We study two generalized versions of a system of equations which describe the time evolution of the hydrodynamic fluctuations of density and velocity in a linear viscoelastic fluid. In the first of these versions, the time derivatives are replaced by conformable derivatives, and in the second version left-handed Caputo’s derivatives are used. We show that the solutions obtained with these two types of derivatives exhibit significant similarities, which is an interesting (and somewhat surprising) result, taking into account that the conformable derivatives are local operators, while Caputo’s derivatives are nonlocal operators. We also show that the solutions of the generalized systems are similar to the solutions of the original system, if the order α of the new derivatives (conformable or Caputo) is less than one. On the other hand, when α is greater than one, the solutions of the generalized systems are qualitatively different from the solutions of the original system.
文摘The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system and combined with the improved MH-NMSS-PSO parameter estimation method to fit the real data of Delhi, India from April 1, 2020 to June 30, 2020. The results show that the fitting effect is quite ideal. Finally, long-term predictions were made on the number of infections. We accurately estimate that the peak number of infections in Delhi, India, can reach around 2.1 million. This paper also compares the fitting performance of the integer-order COVID-19 model and the fractional-order COVID-19 model using the real data from Delhi. The results indicate that the fractional-order model with different orders, as we proposed, performs the best.
基金supported by CNPq and CAPES(Brazilian research funding agencies)Portuguese funds through the Center for Research and Development in Mathematics and Applications(CIDMA)the Portuguese Foundation for Science and Technology(FCT),within project UID/MAT/04106/2013
文摘Invariant conditions for conformable fractional problems of the calculus of variations under the presence of external forces in the dynamics are studied. Depending on the type of transformations considered, different necessary conditions of invariance are obtained. As particular cases, we prove fractional versions of Noether's symmetry theorem. Invariant conditions for fractional optimal control problems, using the Hamiltonian formalism, are also investigated. As an example of potential application in Physics, we show that with conformable derivatives it is possible to formulate an Action Principle for particles under frictional forces that is far simpler than the one obtained with classical fractional derivatives.
基金supported by the National Natural Science Foundation of China(Grant Nos.11272287 and 11472247)the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT13097)the Key Science and Technology Innovation Team Project of Zhejiang Province,China(Grant No.2013TD18)
文摘In this paper, we present the fractional Hamilton's canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. First/y, the exchanging relationship between isochronous variation and fractional derivatives, and the fractional Hamilton principle of the system under this fractional derivative are proposed. Secondly, the fractional Hamilton's canonical equations of Hamilton systems based on the Hamilton principle are established. Thirdly, the fractional non-Noether symmetries, non-Noether theorem and non-Noether conserved quantities for the Hamilton systems with the conformable fractional derivatives are obtained. Finally, an example is given to illustrate the results.
基金the Deanship of Scientific Research at King Khalid University for funding their work through Research Group Program under grant number(G.P.1/160/40)。
文摘We deal with the Wick-type stochastic fractional Korteweg de–Vries(KdV) equation with conformable derivatives.With the aid of the Exp-function method, white noise theory, and Hermite transform, we produce a novel set of exact soliton and periodic wave solutions to the fractional KdV equation with conformable derivatives. With the help of inverse Hermite transform, we get stochastic soliton and periodic wave solutions of the Wick-type stochastic fractional KdV equation with conformable derivatives. Eventually, by an application example, we show how the stochastic solutions can be given as Brownian motion functional solutions.
基金The Innovation Foundation for College Teaching Team of Shanxi University of Finance and Economics2015 Education and Teaching Reform Project(2015234) of Shanxi University of Finance and Economics
文摘A class of nonlinear fractional differential equations with conformable fractional differential derivatives is studied. Firstly, Green's function and its properties are given. Secondly, some new existence and multiplicity conditions of positive solutions are obtained by the use of Leggett-Williams fixed-point theorems on cone.
基金Supported by the Educational Commission of Hubei Province(B2016160)
文摘In this paper, we introduce and investigate the concept of conformable delta fractional derivative on time scales. By using the theory of time scales, we obtain some basic properties of the conformable delta fractional derivative. Our results extend and improve both the results in [9] and the usual delta derivative.
基金supported by Key Projectof Natural Science Foundation of China(61833005)the Natural Science Foundation of Hebei Province of China(A2018203288)。
文摘This article aims to address the global exponential synchronization problem for fractional-order complex dynamical networks(FCDNs)with derivative couplings and impulse effects via designing an appropriate feedback control based on discrete time state observations.In contrast to the existing works on integer-order derivative couplings,fractional derivative couplings are introduced into FCDNs.First,a useful lemma with respect to the relationship between the discrete time observations term and a continuous term is developed.Second,by utilizing an inequality technique and auxiliary functions,the rigorous global exponential synchronization analysis is given and synchronization criterions are achieved in terms of linear matrix inequalities(LMIs).Finally,two examples are provided to illustrate the correctness of the obtained results.
文摘We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their solutions.As an application,we derive a finite time stability result using the representation of solutions and a norm estimation of the conformable delayedmatrix functions.The obtained results are new,and they extend and improve some existing ones.Finally,an example is presented to illustrate the validity of our theoretical results.
基金supported by the Internal Project of Excellent Research of the Faculty of Science of Hradec KrálovéUniversity(Grant No.2022/2218)。
文摘We investigate the fractional heat equation with fractional translation in both time and position with different fractional orders.As examples,we consider a rod and anα-disk with an initial constant temperature and discuss their cooling processes in the examined formalism.
基金Supported by the National Natural Science Foundation of China(72001181,71901184)the Sichuan Federation of Social Science Associations(SC20B122)。
文摘This study considers a nonlinear grey Bernoulli forecasting model with conformable fractionalorder accumulation,abbreviated as CFNGBM(1,1,λ),to study the gross regional product in the ChengYu area.The new model contains three nonlinear parameters,the power exponentγ,the conformable fractional-orderαand the background valueλ,which increase the adjustability and flexibility of the CFNGBM(1,1,λ)model.Nonlinear parameters are determined by the moth flame optimization algorithm,which minimizes the mean absolute prediction percentage error.The CFNGBM(1,1,λ)model is applied to the gross regional product of 16 cities in the Cheng-Yu area,which are Chongqing,Chengdu,Mianyang,Leshan,Zigong,Deyang,Meishan,Luzhou,Suining,Neijiang,Nanchong,Guang’an,Yibin,Ya’an,Dazhou and Ziyang.With data from 2013 to 2021,several grey models are established and results show that the new model has higher accuracy in most cases.
基金Project supported by the National Natural Science Foundation of China(Nos.11790282,U1534204,and 11472179)the Natural Science Foundation of Hebei Province of China(No.A2016210099)
文摘This paper proposes a novel unified visco-plastic constitutive model for uniaxial ratcheting behaviors. The cyclic deformation of the material presents remarkable time-dependence and history memory phenomena. The fractional(fractional-order)derivative is an efficient tool for modeling these phenomena. Therefore, we develop a cyclic fractional-order unified visco-plastic(FVP) constitutive model. Specifically, within the framework of the cyclic elasto-plastic theory, the fractional derivative is used to describe the accumulated plastic strain rate and nonlinear kinematic hardening rule based on the Ohno-Abdel-Karim model. Moreover, a new radial return method for the back stress is developed to describe the unclosed hysteresis loops of the stress-strain properly.The capacity of the FVP model used to predict the cyclic deformation of the SS304 stainless steel is verified through a comparison with the corresponding experimental data found in the literature(KANG, G. Z., KAN, Q. H., ZHANG, J., and SUN, Y. F. Timedependent ratcheting experiments of SS304 stainless steel. International Journal of Plasticity, 22(5), 858–894(2006)). The FVP model is shown to be successful in predicting the rate-dependent ratcheting behaviors of the SS304 stainless steel.
基金The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding this Research group No(RG-1440-030).
文摘In this article,several theorems of fractional conformable derivatives and triple Sumudu transform are given and proved.Based on these theorems,a new conformable triple Sumudu decomposition method(CTSDM)is intrduced for the solution of singular two-dimensional conformable functional Burger's equation.This method is a combination of the decomposition method(DM)and Conformable triple Sumudu transform.The exact and approximation solutions obtained by using the suggested method in the sense of conformable.Particular examples are given to clarify the possible application of the achieved results and the exact and approximate solution are sketched by using Matlab software.
文摘In this paper, we investigate the nonlinear neutral fractional integral-differential equation involving conformable fractional derivative and integral. First of all, we give the form of the solution by lemma. Furthermore, existence results for the solution and sufficient conditions for uniqueness solution are given by the Leray-Schauder nonlinear alternative and Banach contraction mapping principle. Finally, an example is provided to show the application of results.
文摘The Strebel point is a TeichmOller equivalence class in the Teichmuller space that has a certain rigidity in the extremality of the maximal dilatation. In this paper, we give a sufficient condition in terms of the Schwarzian derivative for a Teichmuller equivalence class of the universal Teichmuller space under which the class is a Strebel point. As an application, we construct a Teichmuller equivalence class that is a Strebel point and that is not an asymptotically conformal class.
文摘The complex derivative D^α±jβ, with α, β ∈ R+ is a generalization of the concept of integer derivative, where α = 1,β = 0. Fractional-order electric elements and circuits are becoming more and more attractive. In this paper, the complexorder electric elements concept is proposed for the first time, and the complex-order elements are modeled and analyzed.Some interesting phenomena are found that the real part of the order affects the phase of output signal, and the imaginary part affects the amplitude for both the complex-order capacitor and complex-order memristor. More interesting is that the complex-order capacitor can do well at the time of fitting electrochemistry impedance spectra. The complex-order memristor is also analyzed. The area inside the hysteresis loops increases with the increasing of the imaginary part of the order and decreases with the increasing of the real part. Some complex case of complex-order memristors hysteresis loops are analyzed at last, whose loop has touching points beyond the origin of the coordinate system.
文摘The nonlinear conformable time-fractional Zoomeron equation is an important mod-el to describe the evolution of a single scalar field.In this paper,new exact solutions of con-formable time-fractional Zoomeron equation are constructed using the Improved Bernoulli Sub-Equation Function Method(IBSEFM).According to the parameters,3D and 2D figures of the solutions are plotted by the aid of Mathematics software.The results show that IBSEFM is an efficient mathematical tool to solve nonlinear conformable time-fractional equations arising in mathematical physics and nonlinear optics.