Based on the fluid flow time-delayed model proposed by Misra et al in internet congestion control, one modified time-delayed model is presented, where the influence of the communication delay on the router queue lengt...Based on the fluid flow time-delayed model proposed by Misra et al in internet congestion control, one modified time-delayed model is presented, where the influence of the communication delay on the router queue length is investigated in detail. The main advantage of the new model is that its stability domain is larger even without an extra controller. By linear stability analysis and numerical simulation, tbe effectiveness and feasibility of the novel model in internet congestion control are verified.展开更多
Accurate classification and prediction of future traffic conditions are essential for developing effective strategies for congestion mitigation on the highway systems. Speed distribution is one of the traffic stream p...Accurate classification and prediction of future traffic conditions are essential for developing effective strategies for congestion mitigation on the highway systems. Speed distribution is one of the traffic stream parameters, which has been used to quantify the traffic conditions. Previous studies have shown that multi-modal probability distribution of speeds gives excellent results when simultaneously evaluating congested and free-flow traffic conditions. However, most of these previous analytical studies do not incorporate the influencing factors in characterizing these conditions. This study evaluates the impact of traffic occupancy on the multi-state speed distribution using the Bayesian Dirichlet Process Mixtures of Generalized Linear Models (DPM-GLM). Further, the study estimates the speed cut-point values of traffic states, which separate them into homogeneous groups using Bayesian change-point detection (BCD) technique. The study used 2015 archived one-year traffic data collected on Florida’s Interstate 295 freeway corridor. Information criteria results revealed three traffic states, which were identified as free-flow, transitional flow condition (congestion onset/offset), and the congested condition. The findings of the DPM-GLM indicated that in all estimated states, the traffic speed decreases when traffic occupancy increases. Comparison of the influence of traffic occupancy between traffic states showed that traffic occupancy has more impact on the free-flow and the congested state than on the transitional flow condition. With respect to estimating the threshold speed value, the results of the BCD model revealed promising findings in characterizing levels of traffic congestion.展开更多
This paper proposes an adaptive agent model with a hybrid routing selection strategy for studying the road-network congestion problem. We focus on improving those severely congested links. Firstly,a multi-agent system...This paper proposes an adaptive agent model with a hybrid routing selection strategy for studying the road-network congestion problem. We focus on improving those severely congested links. Firstly,a multi-agent system is built,where each agent stands for a vehicle,and it makes its routing selection by considering the shortest path and the minimum congested degree of the target link simultaneously. The agent-based model captures the nonlinear feedback between vehicle routing behaviors and road-network congestion status.Secondly,a hybrid routing selection strategy is provided,which guides the vehicle routes adapting to the realtime road-network congestion status. On this basis, we execute simulation experiments and compare the simulation results of network congestion distribution,by Floyd agent with shortest path strategy and our proposed adaptive agent with hybrid strategy. The simulation results show that our proposed model has reduced the congestion degree of those seriously congested links of road-network. Finally,we execute our model on a real road map. The results finds that those seriously congested roads have some common features such as located at the road junction or near the unique road connecting two areas. And,the results also show an effectiveness of our model on reduction of those seriously congested links in this actual road network. Such a bottom-up congestion control approach with a hybrid congestion optimization perspective will have its significance for actual traffic congestion control.展开更多
To study the congestion of interrupted flow on urban roads, a comprehensive evaluation method is proposed. First, based on the results of correlation analysis between different parameters of interrupted flow, the traf...To study the congestion of interrupted flow on urban roads, a comprehensive evaluation method is proposed. First, based on the results of correlation analysis between different parameters of interrupted flow, the traffic parameters of interrupted traffic flow are divided into two categories: the basic parameters and the operation parameters. Polynomial regression is used to formulize the nonlinear relationships between the basic parameters and the operation parameters. Then, the congestion model incorporating both operational and volume characteristics of traffic flow is proposed. The inputs of the model are the basic parameters, while the output is a dimensionless index value between 0 and 1. Finally, the proposed methods are compared with existing evaluation measures of congestion. Results show that the proposed indices can capture the variation of both the basic parameters and the operation parameters, which is more balanced compared with the existing evaluation measures.展开更多
A practical approach for predicting the congestion boundary due to traffic incidents was proposed. Based on the kinematic wave theory and Van Aerde single-regime flow model, a model for estimating the congestion propa...A practical approach for predicting the congestion boundary due to traffic incidents was proposed. Based on the kinematic wave theory and Van Aerde single-regime flow model, a model for estimating the congestion propagation speed for the basic road segment was developed. Historical traffic flow data were used to analyze the time variant characteristics of the urban traffic flow for each road type. Then, the saturation flow rate was used for analyzing the impact of the traffic incident on the traversing traffic flow at the congestion area. The base congestion propagation speed for each road type was calculated based on field data, which were provided by the remote traffic microwave sensors(RTMS), floating car data(FCD) system and screen line survey. According to a comparative analysis of the congestion propagation speed, it is found that the expressway, major arterial, minor arterial and collector are decreasingly influenced by the traffic incident. Subsequently, the impact of turning movements at intersections on the congestion propagation was considered. The turning ratio was adopted to represent the impact of turning movements, and afterward the corresponding propagation pattern at intersections was analyzed. Finally, an implementation system was designed on a geographic information system(GIS) platform to display the characteristics of the congestion propagation over the network. The validation results show that the proposed approach is able to capture the congestion propagation properties in the actual road network.展开更多
This paper explores the use of archived data to calibrate volume delay functions (VDFs) and updates their input parameters (capacity and free-flow speed) for planning applications. The sensitivity analysis of speed to...This paper explores the use of archived data to calibrate volume delay functions (VDFs) and updates their input parameters (capacity and free-flow speed) for planning applications. The sensitivity analysis of speed to change in congestion level is performed to capture functional characteristics of VDFs in modeling specific facility types. Different sensitivity characteristics shown by the VDFs indicate that each function is suitable to a particular facility type. The results of sensitivity analysis are confirmed by the root mean square percent error (RMSPE) values calculated using the Orlando Urban Area Transportation Study (OUATS) model results and observed data. The modified Davidson’s function exhibits remarkable performance in nearly all facility types. The strength of the modified Davidson’s function across a broad range of facilities can be attributed to the flexibility of its tuning parameter, μ. Fitted Bureau of Public Road (BPR) and conical delay functions show lower RMSPE for uninterrupted flow facilities (freeways/expressways, managed lanes) and higher values for toll roads (which might have partial interruptions due to toll booths) and signalized arterials. Akcelik function underperforms on freeways/expressways and managed lanes but shows some improvements for toll roads and superior results for the signalized arterials. This was a desired strength of Akcelik function when modeling link travel speed on facilities where stopped delays were encountered.展开更多
The article intends to find a method to quantify traffic congestion's impacts on travelers to help transportation planners and policy decision makers well understand congestion situations. Three new congestion indica...The article intends to find a method to quantify traffic congestion's impacts on travelers to help transportation planners and policy decision makers well understand congestion situations. Three new congestion indicators, including transportation environment satisfaction (TES), travel time satisfaction (TTS), and traffic congestion frequency and feeling (TCFF), are defined to estimate urban traffic congestion based on travelers' feelings. Data of travelers' attitude about congestion and trip information were collected from a survey in Shanghai, China. Based on the survey data, we estimated the value of the three indi- cators. Then, the principal components analysis was used to derive a small number of linear combinations of a set of variables to estimate the whole congestion status. A linear regression model was used to find out the significant variables which impact respondents' feelings. Two ordered logit models were used to select significant variables of TES and TTS. Attitudinal factor variables were also used in these models. The results show that attitudinal factor variables and cluster category variables are as important as sociodemographic variables in the models. Using the three congestion indicators, the government can collect travelers' feeling about traffic congestion and estimate the transportation policy that might be applied to cope with traffic congestion.展开更多
Advanced information and communication technolo-gies can be used to facilitate traffic incident management.If an incident is detected and blocks a road link,in order to reduce the incident-induced traffic congestion,a...Advanced information and communication technolo-gies can be used to facilitate traffic incident management.If an incident is detected and blocks a road link,in order to reduce the incident-induced traffic congestion,a dynamic strategy to deliver incident information to selected drivers and help them make detours in urban areas is proposed by this work.Time-dependent shortest path algorithms are used to generate a subnetwork where vehicles should receive such information.A simulation approach based on an extended cell transmission model is used to describe traffic flow in urban networks where path information and traffic flow at downstream road links are well modeled.Simulation results reveal the influences of some major parameters of an incident-induced congestion dissipation process such as the ratio of route-changing vehicles to the total vehicles,operation time interval of the proposed strategy,traffic density in the traffic network,and the scope of the area where traffic incident information is delivered.The results can be used to improve the state of the art in preventing urban road traffic congestion caused by incidents.展开更多
The aim of this paper is to study traffic properties in an on/off-ramp system with a bus stop close to the on/off ramp. The location of the bus stop in the on/off-ramp (thereafter downstream or upstream case) is dis...The aim of this paper is to study traffic properties in an on/off-ramp system with a bus stop close to the on/off ramp. The location of the bus stop in the on/off-ramp (thereafter downstream or upstream case) is discussed. The simulation results show that in the two ramp systems, the reasons for traffic congestions are different. In the on-ramp system, buses and cars coming from on-ramp interweave each other, while in the off-ramp system, buses interweave with cars exiting to off-ramp. Thus, in the on-ramp (off-ramp) system, the upstream (downstream) bus stop is helpful to reduce the interweaving situation. Moreover, the negative effect will disappear when the distance between the bus stop and the on/off-ramp is more than 20 cells (i.e. 150 m). These qualitative findings may provide some suggestions on traffic management and optimization.展开更多
Cascading failures often occur in congested networks such as the Internet. A cascading failure can be described as a three-phase process: generation, diffusion, and dissipation of the congestion. In this account, we ...Cascading failures often occur in congested networks such as the Internet. A cascading failure can be described as a three-phase process: generation, diffusion, and dissipation of the congestion. In this account, we present a function that represents the extent of congestion on a given node. This approach is different from existing fimctions based on betweenness centrality. By introducing the concept of 'delay time', we designate an intergradation between permanent removal and nonremoval. We also construct an evaluation fimction of network efficiency, based on congestion, which measures the damage caused by cascading failures. Finally, we investigate the effects of network structure and size, delay time, processing ability and packet generation speed on congestion propagation. Also, we uncover the relationship between the cascade dynamics and some properties of the network such as structure and size.展开更多
Traffic congestion problem is one of the major problems that face many transportation decision makers for urban areas. The problem has many impacts on social, economical and development aspects of urban areas. Hence t...Traffic congestion problem is one of the major problems that face many transportation decision makers for urban areas. The problem has many impacts on social, economical and development aspects of urban areas. Hence the solution to this problem is not straight forward. It requires a lot of effort, expertise, time and cost that sometime are not available. Most of the existing transportation planning software, specially the most advanced ones, requires personnel with lots practical transportation planning experience and with high level of education and training. In this paper we propose a comprehensive framework for an Intelligent Decision Support System (IDSS) for Traffic Congestion Management System that utilizes a state of the art transportation network equilibrium modeling and providing an easy to use GIS-based interaction environment. The developed IDSS reduces the dependability on the expertise and level of education of the transportation planners, transportation engineers, or any transportation decision makers.展开更多
This paper discusses the distinction between internetworks and single network in the congestion control. It has shown the reason why all of single network’s congestion control is not suitable to internetworks. A new ...This paper discusses the distinction between internetworks and single network in the congestion control. It has shown the reason why all of single network’s congestion control is not suitable to internetworks. A new congestion control scheme of internetworks is presented which uses acknowledgment time-outs and the feedback signal from gateway as indications of packet loss and congestion. Using a black-box model of the internetworks, this paper derives approximate calculating formulas and proves the scheme’s special characters by computer simulation. It is shown that the presented method is better than R. Jain’s (1986).展开更多
In order to address the optimal distance toll design problem for cordon-based congestion pricing incorporating the issue of equity,this paper presents a toll user equilibrium( TUE) model based on a transformed network...In order to address the optimal distance toll design problem for cordon-based congestion pricing incorporating the issue of equity,this paper presents a toll user equilibrium( TUE) model based on a transformed network with elastic demand,to evaluate any given toll charge function. A bi-level programming model is developed for determining the optimal toll levels,with the TUE being represented at the lower level.The upper level optimizes the total equity level over the transport network,represented by the Gini coefficient,where a constraint is imposed to the total travel impedance of each OD pair after the levy. A genetic algorithm( GA) is implemented to solve the bi-level model,which is verified by a numerical example.展开更多
<span style="font-family:Verdana;">In the present deregulated electricity market, power system congestion is the main complication that an independent system operator (ISO) faces on a regular basis. Tr...<span style="font-family:Verdana;">In the present deregulated electricity market, power system congestion is the main complication that an independent system operator (ISO) faces on a regular basis. Transmission line congestion trigger serious problems for smooth functioning in restructured power system causing an increase in the cost of transmission hence affecting market efficiency. Thus, it is of utmost importance for the investigation of various techniques in order to relieve congestion in the transmission network. Generation rescheduling is one of the most efficacious techniques to do away with the problem of congestion. For optimiz</span><span style="font-family:Verdana;">ing the congestion cost, this work suggests a hybrid optimization based on</span><span style="font-family:Verdana;"> two effective algorithms viz Teaching learning-based optimization (TLBO) algorithm and Particle swarm optimization (PSO) algorithm. For binding the constraints, the traditional penalty function technique is incorporated. Modified IEEE 30-bus test system and modified IEEE 57-bus test system are used to inspect the usefulness of the suggested methodology.</span>展开更多
In order to control traffic congestion, many mathematical models have been used for several decades. In this paper, we study diffusion-type traffic flow model based on exponential velocity density relation, which prov...In order to control traffic congestion, many mathematical models have been used for several decades. In this paper, we study diffusion-type traffic flow model based on exponential velocity density relation, which provides a non-linear second-order parabolic partial differential equation. The analytical solution of the diffusion-type traffic flow model is very complicated to approximate the initial density of the Cauchy problem as a function of x from given data and it may cause a huge error. For the complexity of the analytical solution, the numerical solution is performed by implementing an explicit upwind, explicitly centered, and second-order Lax-Wendroff scheme for the numerical solution. From the comparison of relative error among these three schemes, it is observed that Lax-Wendroff scheme gives less error than the explicit upwind and explicit centered difference scheme. The numerical, analytical analysis and comparative result discussion bring out the fact that the Lax-Wendroff scheme with exponential velocity-density relation of diffusion type traffic flow model is suitable for the congested area and shows a better fit in traffic-congested regions.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 70571017)the Research Foundation from Provincial Education Department of Zhejiang of China (Grant No 21186000507)
文摘Based on the fluid flow time-delayed model proposed by Misra et al in internet congestion control, one modified time-delayed model is presented, where the influence of the communication delay on the router queue length is investigated in detail. The main advantage of the new model is that its stability domain is larger even without an extra controller. By linear stability analysis and numerical simulation, tbe effectiveness and feasibility of the novel model in internet congestion control are verified.
文摘Accurate classification and prediction of future traffic conditions are essential for developing effective strategies for congestion mitigation on the highway systems. Speed distribution is one of the traffic stream parameters, which has been used to quantify the traffic conditions. Previous studies have shown that multi-modal probability distribution of speeds gives excellent results when simultaneously evaluating congested and free-flow traffic conditions. However, most of these previous analytical studies do not incorporate the influencing factors in characterizing these conditions. This study evaluates the impact of traffic occupancy on the multi-state speed distribution using the Bayesian Dirichlet Process Mixtures of Generalized Linear Models (DPM-GLM). Further, the study estimates the speed cut-point values of traffic states, which separate them into homogeneous groups using Bayesian change-point detection (BCD) technique. The study used 2015 archived one-year traffic data collected on Florida’s Interstate 295 freeway corridor. Information criteria results revealed three traffic states, which were identified as free-flow, transitional flow condition (congestion onset/offset), and the congested condition. The findings of the DPM-GLM indicated that in all estimated states, the traffic speed decreases when traffic occupancy increases. Comparison of the influence of traffic occupancy between traffic states showed that traffic occupancy has more impact on the free-flow and the congested state than on the transitional flow condition. With respect to estimating the threshold speed value, the results of the BCD model revealed promising findings in characterizing levels of traffic congestion.
基金supported by National Natural Science Foundation of China(61573194,61374180,61573096)China Postdoctoral Science Foundation Funded Project(2013M530229)+3 种基金China Postdoctoral Science Special Foundation Funded Project(2014T70463)Six Talent Peaks High Level Project of Jiangsu Province(ZNDW-004)Science Foundation of Nanjing University of Posts and Telecommunications(NY213095)Australian Research Council(DP120104986)
基金Sponsored by the Natural Science Foundation of Hunan ProvinceChina(Grant No.13JJ3049)the Fundamental Research Funds for the Central Universities(Grant No.2012AA01A301-1)
文摘This paper proposes an adaptive agent model with a hybrid routing selection strategy for studying the road-network congestion problem. We focus on improving those severely congested links. Firstly,a multi-agent system is built,where each agent stands for a vehicle,and it makes its routing selection by considering the shortest path and the minimum congested degree of the target link simultaneously. The agent-based model captures the nonlinear feedback between vehicle routing behaviors and road-network congestion status.Secondly,a hybrid routing selection strategy is provided,which guides the vehicle routes adapting to the realtime road-network congestion status. On this basis, we execute simulation experiments and compare the simulation results of network congestion distribution,by Floyd agent with shortest path strategy and our proposed adaptive agent with hybrid strategy. The simulation results show that our proposed model has reduced the congestion degree of those seriously congested links of road-network. Finally,we execute our model on a real road map. The results finds that those seriously congested roads have some common features such as located at the road junction or near the unique road connecting two areas. And,the results also show an effectiveness of our model on reduction of those seriously congested links in this actual road network. Such a bottom-up congestion control approach with a hybrid congestion optimization perspective will have its significance for actual traffic congestion control.
基金The National High Technology Research and Development Program of China(863 Program)(No.2011AA110302-01)
文摘To study the congestion of interrupted flow on urban roads, a comprehensive evaluation method is proposed. First, based on the results of correlation analysis between different parameters of interrupted flow, the traffic parameters of interrupted traffic flow are divided into two categories: the basic parameters and the operation parameters. Polynomial regression is used to formulize the nonlinear relationships between the basic parameters and the operation parameters. Then, the congestion model incorporating both operational and volume characteristics of traffic flow is proposed. The inputs of the model are the basic parameters, while the output is a dimensionless index value between 0 and 1. Finally, the proposed methods are compared with existing evaluation measures of congestion. Results show that the proposed indices can capture the variation of both the basic parameters and the operation parameters, which is more balanced compared with the existing evaluation measures.
基金Project(2012CB725403)supported by the National Basic Research Program of ChinaProjects(51678045,51578052)supported by the National Natural Science Foundation of ChinaProject(2016JBM032)supported by the Fundamental Research Funds for the Central Universities,China
文摘A practical approach for predicting the congestion boundary due to traffic incidents was proposed. Based on the kinematic wave theory and Van Aerde single-regime flow model, a model for estimating the congestion propagation speed for the basic road segment was developed. Historical traffic flow data were used to analyze the time variant characteristics of the urban traffic flow for each road type. Then, the saturation flow rate was used for analyzing the impact of the traffic incident on the traversing traffic flow at the congestion area. The base congestion propagation speed for each road type was calculated based on field data, which were provided by the remote traffic microwave sensors(RTMS), floating car data(FCD) system and screen line survey. According to a comparative analysis of the congestion propagation speed, it is found that the expressway, major arterial, minor arterial and collector are decreasingly influenced by the traffic incident. Subsequently, the impact of turning movements at intersections on the congestion propagation was considered. The turning ratio was adopted to represent the impact of turning movements, and afterward the corresponding propagation pattern at intersections was analyzed. Finally, an implementation system was designed on a geographic information system(GIS) platform to display the characteristics of the congestion propagation over the network. The validation results show that the proposed approach is able to capture the congestion propagation properties in the actual road network.
文摘This paper explores the use of archived data to calibrate volume delay functions (VDFs) and updates their input parameters (capacity and free-flow speed) for planning applications. The sensitivity analysis of speed to change in congestion level is performed to capture functional characteristics of VDFs in modeling specific facility types. Different sensitivity characteristics shown by the VDFs indicate that each function is suitable to a particular facility type. The results of sensitivity analysis are confirmed by the root mean square percent error (RMSPE) values calculated using the Orlando Urban Area Transportation Study (OUATS) model results and observed data. The modified Davidson’s function exhibits remarkable performance in nearly all facility types. The strength of the modified Davidson’s function across a broad range of facilities can be attributed to the flexibility of its tuning parameter, μ. Fitted Bureau of Public Road (BPR) and conical delay functions show lower RMSPE for uninterrupted flow facilities (freeways/expressways, managed lanes) and higher values for toll roads (which might have partial interruptions due to toll booths) and signalized arterials. Akcelik function underperforms on freeways/expressways and managed lanes but shows some improvements for toll roads and superior results for the signalized arterials. This was a desired strength of Akcelik function when modeling link travel speed on facilities where stopped delays were encountered.
基金supported by the Key Natural Science Foundation of China:Urban Transportation Planning Theory and Methods under the Information Environment, Grant No. 50738004/E0807
文摘The article intends to find a method to quantify traffic congestion's impacts on travelers to help transportation planners and policy decision makers well understand congestion situations. Three new congestion indicators, including transportation environment satisfaction (TES), travel time satisfaction (TTS), and traffic congestion frequency and feeling (TCFF), are defined to estimate urban traffic congestion based on travelers' feelings. Data of travelers' attitude about congestion and trip information were collected from a survey in Shanghai, China. Based on the survey data, we estimated the value of the three indi- cators. Then, the principal components analysis was used to derive a small number of linear combinations of a set of variables to estimate the whole congestion status. A linear regression model was used to find out the significant variables which impact respondents' feelings. Two ordered logit models were used to select significant variables of TES and TTS. Attitudinal factor variables were also used in these models. The results show that attitudinal factor variables and cluster category variables are as important as sociodemographic variables in the models. Using the three congestion indicators, the government can collect travelers' feeling about traffic congestion and estimate the transportation policy that might be applied to cope with traffic congestion.
基金supported by the National Natural Science Foundation of China(61374148)
文摘Advanced information and communication technolo-gies can be used to facilitate traffic incident management.If an incident is detected and blocks a road link,in order to reduce the incident-induced traffic congestion,a dynamic strategy to deliver incident information to selected drivers and help them make detours in urban areas is proposed by this work.Time-dependent shortest path algorithms are used to generate a subnetwork where vehicles should receive such information.A simulation approach based on an extended cell transmission model is used to describe traffic flow in urban networks where path information and traffic flow at downstream road links are well modeled.Simulation results reveal the influences of some major parameters of an incident-induced congestion dissipation process such as the ratio of route-changing vehicles to the total vehicles,operation time interval of the proposed strategy,traffic density in the traffic network,and the scope of the area where traffic incident information is delivered.The results can be used to improve the state of the art in preventing urban road traffic congestion caused by incidents.
基金Supported by the National Basic Research Program of China under Grant No.2006CB705500the National Natural Science Foundation of China under Grant Nos.70631001,70701004,and 71071012
文摘The aim of this paper is to study traffic properties in an on/off-ramp system with a bus stop close to the on/off ramp. The location of the bus stop in the on/off-ramp (thereafter downstream or upstream case) is discussed. The simulation results show that in the two ramp systems, the reasons for traffic congestions are different. In the on-ramp system, buses and cars coming from on-ramp interweave each other, while in the off-ramp system, buses interweave with cars exiting to off-ramp. Thus, in the on-ramp (off-ramp) system, the upstream (downstream) bus stop is helpful to reduce the interweaving situation. Moreover, the negative effect will disappear when the distance between the bus stop and the on/off-ramp is more than 20 cells (i.e. 150 m). These qualitative findings may provide some suggestions on traffic management and optimization.
基金the National Natural Science Foundation of China (No. 60573128)the Ph.D. Programs Foundation of Ministry of Education of China (No. 20060183043)+1 种基金the China–British Columbia Innovation and Commercialization Strategic Develop-ment Grant (No. 2008DFA12140)the Jilin University 985 Graduate Student Innovation Foundation (No. 20080235)
文摘Cascading failures often occur in congested networks such as the Internet. A cascading failure can be described as a three-phase process: generation, diffusion, and dissipation of the congestion. In this account, we present a function that represents the extent of congestion on a given node. This approach is different from existing fimctions based on betweenness centrality. By introducing the concept of 'delay time', we designate an intergradation between permanent removal and nonremoval. We also construct an evaluation fimction of network efficiency, based on congestion, which measures the damage caused by cascading failures. Finally, we investigate the effects of network structure and size, delay time, processing ability and packet generation speed on congestion propagation. Also, we uncover the relationship between the cascade dynamics and some properties of the network such as structure and size.
文摘Traffic congestion problem is one of the major problems that face many transportation decision makers for urban areas. The problem has many impacts on social, economical and development aspects of urban areas. Hence the solution to this problem is not straight forward. It requires a lot of effort, expertise, time and cost that sometime are not available. Most of the existing transportation planning software, specially the most advanced ones, requires personnel with lots practical transportation planning experience and with high level of education and training. In this paper we propose a comprehensive framework for an Intelligent Decision Support System (IDSS) for Traffic Congestion Management System that utilizes a state of the art transportation network equilibrium modeling and providing an easy to use GIS-based interaction environment. The developed IDSS reduces the dependability on the expertise and level of education of the transportation planners, transportation engineers, or any transportation decision makers.
文摘This paper discusses the distinction between internetworks and single network in the congestion control. It has shown the reason why all of single network’s congestion control is not suitable to internetworks. A new congestion control scheme of internetworks is presented which uses acknowledgment time-outs and the feedback signal from gateway as indications of packet loss and congestion. Using a black-box model of the internetworks, this paper derives approximate calculating formulas and proves the scheme’s special characters by computer simulation. It is shown that the presented method is better than R. Jain’s (1986).
基金Sponsored by the National Natural Science Foundation of China(Grant No.61374195 and 71501038)the Fundamental Research Funds for the Central Universities(Grant No.2242015R30036)the Natural Science Foundation of Jiangsu Province in China(Grant No.BK20150603)
文摘In order to address the optimal distance toll design problem for cordon-based congestion pricing incorporating the issue of equity,this paper presents a toll user equilibrium( TUE) model based on a transformed network with elastic demand,to evaluate any given toll charge function. A bi-level programming model is developed for determining the optimal toll levels,with the TUE being represented at the lower level.The upper level optimizes the total equity level over the transport network,represented by the Gini coefficient,where a constraint is imposed to the total travel impedance of each OD pair after the levy. A genetic algorithm( GA) is implemented to solve the bi-level model,which is verified by a numerical example.
文摘<span style="font-family:Verdana;">In the present deregulated electricity market, power system congestion is the main complication that an independent system operator (ISO) faces on a regular basis. Transmission line congestion trigger serious problems for smooth functioning in restructured power system causing an increase in the cost of transmission hence affecting market efficiency. Thus, it is of utmost importance for the investigation of various techniques in order to relieve congestion in the transmission network. Generation rescheduling is one of the most efficacious techniques to do away with the problem of congestion. For optimiz</span><span style="font-family:Verdana;">ing the congestion cost, this work suggests a hybrid optimization based on</span><span style="font-family:Verdana;"> two effective algorithms viz Teaching learning-based optimization (TLBO) algorithm and Particle swarm optimization (PSO) algorithm. For binding the constraints, the traditional penalty function technique is incorporated. Modified IEEE 30-bus test system and modified IEEE 57-bus test system are used to inspect the usefulness of the suggested methodology.</span>
文摘In order to control traffic congestion, many mathematical models have been used for several decades. In this paper, we study diffusion-type traffic flow model based on exponential velocity density relation, which provides a non-linear second-order parabolic partial differential equation. The analytical solution of the diffusion-type traffic flow model is very complicated to approximate the initial density of the Cauchy problem as a function of x from given data and it may cause a huge error. For the complexity of the analytical solution, the numerical solution is performed by implementing an explicit upwind, explicitly centered, and second-order Lax-Wendroff scheme for the numerical solution. From the comparison of relative error among these three schemes, it is observed that Lax-Wendroff scheme gives less error than the explicit upwind and explicit centered difference scheme. The numerical, analytical analysis and comparative result discussion bring out the fact that the Lax-Wendroff scheme with exponential velocity-density relation of diffusion type traffic flow model is suitable for the congested area and shows a better fit in traffic-congested regions.