Conjugative transfer of antibiotic resistance genes(ARGs)by plasmids is an important route for ARG dissemination.An increasing number of antibiotic and nonantibiotic compounds have been reported to aid the spread of A...Conjugative transfer of antibiotic resistance genes(ARGs)by plasmids is an important route for ARG dissemination.An increasing number of antibiotic and nonantibiotic compounds have been reported to aid the spread of ARGs,highlighting potential challenges for controlling this type of horizontal transfer.Development of conjugation inhibitors that block or delay the transfer of ARG-bearing plasmids is a promising strategy to control the propagation of antibiotic resistance.Although such inhibitors are rare,they typically exhibit relatively high toxicity and low efficacy in vivo and their mechanisms of action are inadequately understood.Here,we studied the effects of dihydroartemisinin(DHA),an artemisinin derivative used to treat malaria,on conjugation.DHA inhibited the conjugation of the IncI2 and IncX4 plasmids carrying the mobile colistin resistance gene(mcr-1)by more than 160-fold in vitro in Escherichia coli,and more than two-fold(IncI2 plasmid)in vivo in a mouse model.It also suppressed the transfer of the IncX3 plasmid carrying the carbapenem resistance gene bla_(NDM-5)by more than twofold in vitro.Detection of intracellular adenosine triphosphate(ATP)and proton motive force(PMF),in combination with transcriptomic and metabolomic analyses,revealed that DHA impaired the function of the electron transport chain(ETC)by inhibiting the tricarboxylic acid(TCA)cycle pathway,thereby disrupting PMF and limiting the availability of intracellular ATP for plasmid conjugative transfer.Furthermore,expression levels of genes related to conjugation and pilus generation were significantly down-regulated during DHA exposure,indicating that the transfer apparatus for conjugation may be inhibited.Our findings provide new insights into the control of antibiotic resistance and the potential use of DHA.展开更多
Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.Th...Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary.However,in the case of tubular concrete structures,where air inlet and outlet are relatively limited,the internal air temperature does not dissipate promptly to the external environment as it rises.To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces during construction,we establish an air–concrete coupled heat transfer model according to the principles of conjugate heat transfer,and the accuracy of the model is verified through experiments.Furthermore,we conduct a case study to analyze the impact of airflow within the ship lock corridor on concrete temperature and creep stress.The results demonstrate that enhancing airflow within the corridor can significantly reduce the maximum concrete temperature.Compared with cases in which airflow within the corridor is neglected,the maximum concrete temperature and maximum tensile stress can be reduced by 12.5℃ and 0.7 MPa,respectively,under a wind speed of 4 m/s.The results of the traditional calculation method are relatively close to those obtained at a wind speed of 1 m/s.However,the temperature reduction process in the traditional method is faster,and the method yields greater tensile stress values for the corridor location.展开更多
BACKGROUND: The highly specific vascular endothelialgrowth factor (VEGF) induces the growth of vascular en-dothelial cell. This study was to construct the eukaryoticexpression plasmid of vascular endothelial growth fa...BACKGROUND: The highly specific vascular endothelialgrowth factor (VEGF) induces the growth of vascular en-dothelial cell. This study was to construct the eukaryoticexpression plasmid of vascular endothelial growth factorl65(VEGF165) and observe its expression in vascular smoothmuscles (VSMCs).METHODS: The primers were designed and synthesizedaccording to the gene sequences of human VEGF165. TheVEGF165 gene was obtained from umbilic artery tissue bythe method of RT-PCR, then it was cloned to eukaryoticexpression plasmid pBudCE4.1 by recombination strategy.The eukaryotic expression plasmid named pBudCE4.1/VEGF165 was identified by restriction enzyme digestion,and was sequenced. The pBudCE4.1/VEGF165 was trans-fected into VSMCs by using lipofection. The VEGF165 ex-pression of mRNA and protein was detected by RT-PCRand Western blot respectively.RESULTS: VEGF165 was shown about 576bp by RT-PCR.Sequencing revealed the amplified VEGF165 gene was iden-tical with that in the GeneBank. Restrictive enzyme (HindBam HI) digestion analysis showed that recombinantexpression plasmid pBudCE4. l/tVEGF165 had been con-structed successfully. The expression of VEGF165 at mRNAand protein levels in the transformed VSMCs had beendemonstrated by RT-PCR and Western blot.CONCLUSIONS: The recombinant eukaryotic expressionplasmid pBudCE4.1/VEGF165 has been successfully con-structed and expressed in transformed VSMCs. The presentstudy has laid a foundation for VEGF165 gene therapy ofvascular stenosis in the transplant organ.展开更多
Bacteria can evolve rapidly by acquiring new traits such as virulence,metabolic properties,and most importantly,antimicrobial resistance,through horizontal gene transfer(HGT).Multidrug resistance in bacteria,especiall...Bacteria can evolve rapidly by acquiring new traits such as virulence,metabolic properties,and most importantly,antimicrobial resistance,through horizontal gene transfer(HGT).Multidrug resistance in bacteria,especially in Gram-negative organisms,has become a global public health threat often through the spread of mobile genetic elements.Conjugation represents a major form of HGT and involves the transfer of DNA from a donor bacterium to a recipient by direct contact.Conjugative plasmids,a major vehicle for the dissemination of antimicrobial resistance,are selfish elements capable of mediating their own transmission through conjugation.To spread to and survive in a new bacterial host,conjugative plasmids have evolved mechanisms to circumvent both host defense systems and compete with co-resident plasmids.Such mechanisms have mostly been studied in model plasmids such as the F plasmid,rather than in conjugative plasmids that confer antimicrobial resistance(AMR)in important human pathogens.A better understanding of these mechanisms is crucial for predicting the flow of antimicrobial resistance-conferring conjugative plasmids among bacterial populations and guiding the rational design of strategies to halt the spread of antimicrobial resistance.Here,we review mechanisms employed by conjugative plasmids that promote their transmission and establishment in Gram-negative bacteria,by following the life cycle of conjugative plasmids.展开更多
After organ transplantation, rapid repair of injured vascular endothelial cell (VEC) is a key to prevent graft chronic dysfunction besides control of immunological rejection. Many studies have confirmed that vascular ...After organ transplantation, rapid repair of injured vascular endothelial cell (VEC) is a key to prevent graft chronic dysfunction besides control of immunological rejection. Many studies have confirmed that vascular endothelial growth factor 165 (VEGF165) could accelerate the repair of VEC injury, decrease thrombosis and thrombotic occlusion, and inhibit hyperplasia of the intima. This study was designed to construct eukaryotic expression plasmid pBudCE4.1/VEGF165, and observe its effect on the prolife ration of VEC. METHODS:The VEGF165 gene cloned from human heart tissue by RT-PCR was cloned into eukaryotic expression plasmid pBudCE4.1. The recombinant expression plasmid pBudCE4.1/VEGF165 was identified by restriction enzyme (Hind III and BamH I) digestion analysis, and was sequenced. The pBudCE4.1/VEGF165 was introduced into VEC through lipofection transfection. The VEGF165 mRNA expression by Northern blot and VEGF165 protein expression was detected by immunocytochemical staining. The effect of expression protein on VEC proliferation was detected by flow cytometry. RESULTS:The RT-PCR product of the VEGF165 gene was about 576bp. Sequencing analysis revealed that the sequence of the amplified VEGF165 gene was identical with that in GenBank. Restrictive enzyme digestion analysis showed that recombinant expression plasmid pBudCE4.1/ tVEGF165 had been constructed successfully. The expression of VEGF165 at mRNA and protein levels in the transformed VSMCs had been demonstrated by Northern blot and immunocytochemical staining respectively. The expressed product of VEGF165 could notably accelerate the proliferation of VECs. CONCLUSIONS:pBudCE4.1/VEGF165 is successfully cons- tructed and is expressed in VECs. Expressed VEGF165 can accelerate the VEC proliferation. The present study has laid a foundation for potential use of VEGF165 gene transfection to prevent and treat vascular stenosis in the transplanted organ.展开更多
In piezoceramic ultrasonic devices,the piezoceramic stacks may fail permanently or function improperly if their working temperatures overstep the Curie temperature of the piezoceramic material.While the end of the hor...In piezoceramic ultrasonic devices,the piezoceramic stacks may fail permanently or function improperly if their working temperatures overstep the Curie temperature of the piezoceramic material.While the end of the horn usually serves near the melting point of the molten metal and is enclosed in an airtight chamber,so that it is difficult to experimentally measure the temperature of the transducer and its variation with time,which bring heavy difficulty to the design of the ultrasonic molten metal treatment system.To find a way out,conjugate heat transfer analysis of an ultrasonic molten metal treatment system is performed with coupled fluid and heat transfer finite element method.In modeling of the system,the RNG model and the SIMPLE algorithm are adopted for turbulence and nonlinear coupling between the momentum equation and the energy equation.Forced air cooling as well as natural air cooling is analyzed to compare the difference of temperature evolution.Numerical results show that,after about 350 s of working time,temperatures in the surface of the ceramic stacks in forced air cooling drop about 7 K compared with that in natural cooling.At 240 s,The molten metal surface emits heat radiation with a maximum rate of about 19 036 W/m2,while the heat insulation disc absorbs heat radiation at a maximum rate of about 7922 W/m2,which indicates the effectiveness of heat insulation of the asbestos pad.Transient heat transfer film coefficient and its distribution,which are difficult to be measured experimentally are also obtained through numerical simulation.At 240 s,the heat transfer film coefficient in the surface of the transducer ranges from–17.86 to 20.17 W/(m2?K).Compared with the trial and error method based on the test,the proposed research provides a more effective way in the design and analysis of the temperature control of the molten metal treatment system.展开更多
Objective The gene expression of skeletal muscle under ischemic condition by direct gene injectionwas observed in order to find a new gene delivery method to treat chronic arterial occlusion disease. Methods Weestabli...Objective The gene expression of skeletal muscle under ischemic condition by direct gene injectionwas observed in order to find a new gene delivery method to treat chronic arterial occlusion disease. Methods Weestablished the rabbit hindlimb ischemic model and used plasmid PSV-β-gal as a reporter gene. We transferedgene intramuscularly and detected the activity of β-galactosidase by histochemistry method. Results Weobserved that the gene expression of skeletal muscle under ischemic condition was higher than normalmuscle. Conclusion The result demonstrated that the direct gene injection was suitable for the chronic peripheralarterial occlusion disease, and might be a novel gene delivery method for this disease.展开更多
This paper presents a combined finite element method for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow. The streamline upwind finite el...This paper presents a combined finite element method for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow. The streamline upwind finite element method is used for the analysis of thermal viscous flow in the fluid region, whereas the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components, the pressure and the temperature. The main advantage of the proposed method is to consistently couple heat transfer along the fluid-solid interface. Three test cases, i.e. conjugate Couette flow problem in parallel plate channel, counter-flow in heat exchanger, and conjugate natural convection in a square cavity with a conducting wall, are selected to evaluate the efficiency of the present method.展开更多
A better understanding of two-phase flows with evaporation allows leading to an optimal design of evaporators. For that purpose, numerical simulations are very useful. In this paper, a numerical study has been carried...A better understanding of two-phase flows with evaporation allows leading to an optimal design of evaporators. For that purpose, numerical simulations are very useful. In this paper, a numerical study has been carried out in order to model and simulate the combination of a two-phase flow with evaporation in a vertical tube. The VOF (volume-of-fluid) multiphase flow method and a phase-change model for the mass transfer have been used. For an accurate modeling, the effect of axial conduction has been also taken into account using a conjugate heat transfer model. Since thermal oscillations are undesirable as they can lead to the failure of the tube, flow instabilities have also been analyzed, using FFT (fast Fourier transforms), in order to comprehend their behavior and influence. A control study of the flow instabilities in the tube is also presented. For that purpose tube inlet temperature has been varied using a gain control parameter.展开更多
The method of gene transfer into corneal endothelium was investigated to provide a foundation for the study of TGF-β1 gene transfer to inhibit corneal graft rejection.Two days after direct injection of p MAM TGF-β...The method of gene transfer into corneal endothelium was investigated to provide a foundation for the study of TGF-β1 gene transfer to inhibit corneal graft rejection.Two days after direct injection of p MAM TGF-β1 mediated by liposom e into the anterior cham ber of rabbits,one half of corneas were made into paraffin slides and the endothelial layer was carefully torn from the other half to make a single layer slide of endothelia.By means of im munohistochemical technique, the plasmid p MAM TGF- β1 expression product TGF- β1 in the endothelia was detected.Specific TGF- β1 expression was positive in the endothelia on both the paraffin slide and the single layer slide.The results showed that by direct injection into the anterior cham ber,foreign plasmid DNA could be transferred into the endothelia and its expression was obtained.This may provide a foun- dation for further study on TGF-β1 participating in local induction of corneal imm une tolerance.展开更多
Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration a...Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow. The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency.展开更多
Antimicrobial susceptibility test was performed on 57 clinical isolates of P. aeruginosa and 36 clinical isolates of Acinetobacter with 11 antimicrobial agents including getamicin, amikacin, ciprofloxacin, ofloxacin, ...Antimicrobial susceptibility test was performed on 57 clinical isolates of P. aeruginosa and 36 clinical isolates of Acinetobacter with 11 antimicrobial agents including getamicin, amikacin, ciprofloxacin, ofloxacin, fleroxacin, piperacillin, cefotaxime, cefoperazone/sulbactam, ceftazidime, cefoperazone and doxycycline. Transferable drug resistance plasmid carrying rates of these clinical isolates were also studied. On the basis of the in vitro activities, 52.63%(30/57) of the isolated strains of P. aeruginosa were susceptible to antimicrobial agents selected (except doxycycline), 41.67%(15/36) of the isolated strains of Acinetobacter were susceptible to 11 antimicrobial agents. The sensitivity rate of P.aeruginosa and Acinetobacter to antimicrobial agents selected was 70% or greater to all except doxycycline. Furthermore, the sensitivity rate of P.aeruginosa to amikacin ciprofloxacin, ceftazidime, cefoperazone, cefoperazone/sulbactam, and that of Acinetobacter to cefoperazone/sulbactam, amikacin was more than 90%,among them amikacin, cefoperazone/sulbactam being the most effective. Plasmid analysis showed that 15.79%(9/57) P.aeruginosa strains and 13.89%(5/36) Acinetobacter strains carried plasmid. Conjugative plasmid carrying rates of P. aeruginosa strains and Acinetobacter strains were 7.02%(4/57), 13.89%(5/36), respectively. Conjugative plasmid didn′t play an important role in the formation and dissemination of drug resistance of P. aeruginosa and Acinetobacter.展开更多
Reconstructing the distribution of optical parameters in the participating medium based on the frequency-domain radiative transfer equation (FD-RTE) to probe the internal structure of the medium is investigated in t...Reconstructing the distribution of optical parameters in the participating medium based on the frequency-domain radiative transfer equation (FD-RTE) to probe the internal structure of the medium is investigated in the present work. The forward model of FD-RTE is solved via the finite volume method (FVM). The regularization term formatted by the generalized Gaussian Markov random field model is used in the objective function to overcome the ill-posed nature of the inverse problem. The multi-start conjugate gradient (MCG) method is employed to search the minimum of the objective function and increase the efficiency of convergence. A modified adjoint differentiation technique using the collimated radiative intensity is developed to calculate the gradient of the objective function with respect to the optical parameters. All simulation results show that the proposed reconstruction algorithm based on FD-RTE can obtain the accurate distributions of absorption and scattering coefficients. The reconstructed images of the scattering coefficient have less errors than those of the absorption coefficient, which indicates the former are more suitable to probing the inner structure.展开更多
Summary: To construct basic fibroblast growth factor (bFGF) eukaryotic expression vector and to evaluate the possibility of bFGF gene therapy in orthopedic disease, the pCD-rbFGF recombinant plasmid was constructed by...Summary: To construct basic fibroblast growth factor (bFGF) eukaryotic expression vector and to evaluate the possibility of bFGF gene therapy in orthopedic disease, the pCD-rbFGF recombinant plasmid was constructed by cloning rat basic fibroblast growth factor (bFGF) cDNA into an eukaryotic expression vector, pcDNA 3. Rat osteoblasts were transfected with pCD-rbFGF plasmid by lopofectin mediated gene transfer, the transient expression was detected by streptavidin-biotin-enzyme complex (SABC) method. It was observed that the expression of rat bFGF gene was detected 72 h after transfected distinctly. Basic fibroblast growth factor gene therapy is a method of potential for a wide array of orthopedic diseases.展开更多
Factor Ⅷ deficiency or hemophilia A is X-linkedgenetic disorder in human. General treatment of severehemophilia A consists of adiministration of plasma-derived or recombinant clotting factor concentrates. Ithas cause...Factor Ⅷ deficiency or hemophilia A is X-linkedgenetic disorder in human. General treatment of severehemophilia A consists of adiministration of plasma-derived or recombinant clotting factor concentrates. Ithas caused a series of problems, i. e. viral infection andcost too much to use rF Ⅷ. Nowadays, people havedeveloped the retroviral vector and the adcnoviral展开更多
This paper studied a certain blade with ten radial cooling holes which employed conjugate heat transfer method. The cooling air entered the cooling channel from the bottom of the blade and went out from the top, it wa...This paper studied a certain blade with ten radial cooling holes which employed conjugate heat transfer method. The cooling air entered the cooling channel from the bottom of the blade and went out from the top, it was not ejected into the main flow. This paper used different numerical conditions including different turbulence models,turbulence intensities,thermal conduction coefficients and the influence on fluid property via temperature variation. The temperature distribution and pressure distribution of the blade were compared with experimental data. The results show that the numerical results using different turbulence models are almost identical to experimental data even little deviation occurs at shock wave location. The trends of temperature distribution under different numerical conditions are coincident to experimental data,especially Reynolds stress turbulence model. It can be concluded that anisotropic turbulence models can simulate the transition from laminar to turbulence,and the influence of turbulence intensity on laminar region and transition region is more than that on developed turbulent region.展开更多
The ab initio method has been used to study the 1-3 H transfer reaction on formamidine substituted by halogen. The calculation results show that the substituted halogen has two effects on the 1-3 H transfer reaction...The ab initio method has been used to study the 1-3 H transfer reaction on formamidine substituted by halogen. The calculation results show that the substituted halogen has two effects on the 1-3 H transfer reaction: decreasing the activation energy and stabilizing the C=N double bond owing to the conjugative effect of p-π-p of products and transition states.展开更多
基金supported in part by grants from the Laboratory of Lingnan Modern Agriculture Project (NT2021006)National Key Research and Development Program of China (2022YFD1800400)。
文摘Conjugative transfer of antibiotic resistance genes(ARGs)by plasmids is an important route for ARG dissemination.An increasing number of antibiotic and nonantibiotic compounds have been reported to aid the spread of ARGs,highlighting potential challenges for controlling this type of horizontal transfer.Development of conjugation inhibitors that block or delay the transfer of ARG-bearing plasmids is a promising strategy to control the propagation of antibiotic resistance.Although such inhibitors are rare,they typically exhibit relatively high toxicity and low efficacy in vivo and their mechanisms of action are inadequately understood.Here,we studied the effects of dihydroartemisinin(DHA),an artemisinin derivative used to treat malaria,on conjugation.DHA inhibited the conjugation of the IncI2 and IncX4 plasmids carrying the mobile colistin resistance gene(mcr-1)by more than 160-fold in vitro in Escherichia coli,and more than two-fold(IncI2 plasmid)in vivo in a mouse model.It also suppressed the transfer of the IncX3 plasmid carrying the carbapenem resistance gene bla_(NDM-5)by more than twofold in vitro.Detection of intracellular adenosine triphosphate(ATP)and proton motive force(PMF),in combination with transcriptomic and metabolomic analyses,revealed that DHA impaired the function of the electron transport chain(ETC)by inhibiting the tricarboxylic acid(TCA)cycle pathway,thereby disrupting PMF and limiting the availability of intracellular ATP for plasmid conjugative transfer.Furthermore,expression levels of genes related to conjugation and pilus generation were significantly down-regulated during DHA exposure,indicating that the transfer apparatus for conjugation may be inhibited.Our findings provide new insights into the control of antibiotic resistance and the potential use of DHA.
基金This work was supported by Construction Simulation and Support Optimization of Hydraulic Tunnel Based on Bonded Block-Synthetic Rock Mass Method and Hubei Province Postdoctoral Innovative Practice Position.
文摘Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary.However,in the case of tubular concrete structures,where air inlet and outlet are relatively limited,the internal air temperature does not dissipate promptly to the external environment as it rises.To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces during construction,we establish an air–concrete coupled heat transfer model according to the principles of conjugate heat transfer,and the accuracy of the model is verified through experiments.Furthermore,we conduct a case study to analyze the impact of airflow within the ship lock corridor on concrete temperature and creep stress.The results demonstrate that enhancing airflow within the corridor can significantly reduce the maximum concrete temperature.Compared with cases in which airflow within the corridor is neglected,the maximum concrete temperature and maximum tensile stress can be reduced by 12.5℃ and 0.7 MPa,respectively,under a wind speed of 4 m/s.The results of the traditional calculation method are relatively close to those obtained at a wind speed of 1 m/s.However,the temperature reduction process in the traditional method is faster,and the method yields greater tensile stress values for the corridor location.
基金This study was supported by grants from the 973 National Basic ResearchProgram of China ( 2003CB515501 ) and the National Natural ScienceFoundation of China (No. 30270514).
文摘BACKGROUND: The highly specific vascular endothelialgrowth factor (VEGF) induces the growth of vascular en-dothelial cell. This study was to construct the eukaryoticexpression plasmid of vascular endothelial growth factorl65(VEGF165) and observe its expression in vascular smoothmuscles (VSMCs).METHODS: The primers were designed and synthesizedaccording to the gene sequences of human VEGF165. TheVEGF165 gene was obtained from umbilic artery tissue bythe method of RT-PCR, then it was cloned to eukaryoticexpression plasmid pBudCE4.1 by recombination strategy.The eukaryotic expression plasmid named pBudCE4.1/VEGF165 was identified by restriction enzyme digestion,and was sequenced. The pBudCE4.1/VEGF165 was trans-fected into VSMCs by using lipofection. The VEGF165 ex-pression of mRNA and protein was detected by RT-PCRand Western blot respectively.RESULTS: VEGF165 was shown about 576bp by RT-PCR.Sequencing revealed the amplified VEGF165 gene was iden-tical with that in the GeneBank. Restrictive enzyme (HindBam HI) digestion analysis showed that recombinantexpression plasmid pBudCE4. l/tVEGF165 had been con-structed successfully. The expression of VEGF165 at mRNAand protein levels in the transformed VSMCs had beendemonstrated by RT-PCR and Western blot.CONCLUSIONS: The recombinant eukaryotic expressionplasmid pBudCE4.1/VEGF165 has been successfully con-structed and expressed in transformed VSMCs. The presentstudy has laid a foundation for VEGF165 gene therapy ofvascular stenosis in the transplant organ.
基金the Wellcome Trust,BBSRC,and the National Natural Science Foundation of China(81802065,102908/Z/13/Z).
文摘Bacteria can evolve rapidly by acquiring new traits such as virulence,metabolic properties,and most importantly,antimicrobial resistance,through horizontal gene transfer(HGT).Multidrug resistance in bacteria,especially in Gram-negative organisms,has become a global public health threat often through the spread of mobile genetic elements.Conjugation represents a major form of HGT and involves the transfer of DNA from a donor bacterium to a recipient by direct contact.Conjugative plasmids,a major vehicle for the dissemination of antimicrobial resistance,are selfish elements capable of mediating their own transmission through conjugation.To spread to and survive in a new bacterial host,conjugative plasmids have evolved mechanisms to circumvent both host defense systems and compete with co-resident plasmids.Such mechanisms have mostly been studied in model plasmids such as the F plasmid,rather than in conjugative plasmids that confer antimicrobial resistance(AMR)in important human pathogens.A better understanding of these mechanisms is crucial for predicting the flow of antimicrobial resistance-conferring conjugative plasmids among bacterial populations and guiding the rational design of strategies to halt the spread of antimicrobial resistance.Here,we review mechanisms employed by conjugative plasmids that promote their transmission and establishment in Gram-negative bacteria,by following the life cycle of conjugative plasmids.
文摘After organ transplantation, rapid repair of injured vascular endothelial cell (VEC) is a key to prevent graft chronic dysfunction besides control of immunological rejection. Many studies have confirmed that vascular endothelial growth factor 165 (VEGF165) could accelerate the repair of VEC injury, decrease thrombosis and thrombotic occlusion, and inhibit hyperplasia of the intima. This study was designed to construct eukaryotic expression plasmid pBudCE4.1/VEGF165, and observe its effect on the prolife ration of VEC. METHODS:The VEGF165 gene cloned from human heart tissue by RT-PCR was cloned into eukaryotic expression plasmid pBudCE4.1. The recombinant expression plasmid pBudCE4.1/VEGF165 was identified by restriction enzyme (Hind III and BamH I) digestion analysis, and was sequenced. The pBudCE4.1/VEGF165 was introduced into VEC through lipofection transfection. The VEGF165 mRNA expression by Northern blot and VEGF165 protein expression was detected by immunocytochemical staining. The effect of expression protein on VEC proliferation was detected by flow cytometry. RESULTS:The RT-PCR product of the VEGF165 gene was about 576bp. Sequencing analysis revealed that the sequence of the amplified VEGF165 gene was identical with that in GenBank. Restrictive enzyme digestion analysis showed that recombinant expression plasmid pBudCE4.1/ tVEGF165 had been constructed successfully. The expression of VEGF165 at mRNA and protein levels in the transformed VSMCs had been demonstrated by Northern blot and immunocytochemical staining respectively. The expressed product of VEGF165 could notably accelerate the proliferation of VECs. CONCLUSIONS:pBudCE4.1/VEGF165 is successfully cons- tructed and is expressed in VECs. Expressed VEGF165 can accelerate the VEC proliferation. The present study has laid a foundation for potential use of VEGF165 gene transfection to prevent and treat vascular stenosis in the transplanted organ.
基金Supported by Beijing Municipal Natural Science Foundation of China(Grant No.3093027)
文摘In piezoceramic ultrasonic devices,the piezoceramic stacks may fail permanently or function improperly if their working temperatures overstep the Curie temperature of the piezoceramic material.While the end of the horn usually serves near the melting point of the molten metal and is enclosed in an airtight chamber,so that it is difficult to experimentally measure the temperature of the transducer and its variation with time,which bring heavy difficulty to the design of the ultrasonic molten metal treatment system.To find a way out,conjugate heat transfer analysis of an ultrasonic molten metal treatment system is performed with coupled fluid and heat transfer finite element method.In modeling of the system,the RNG model and the SIMPLE algorithm are adopted for turbulence and nonlinear coupling between the momentum equation and the energy equation.Forced air cooling as well as natural air cooling is analyzed to compare the difference of temperature evolution.Numerical results show that,after about 350 s of working time,temperatures in the surface of the ceramic stacks in forced air cooling drop about 7 K compared with that in natural cooling.At 240 s,The molten metal surface emits heat radiation with a maximum rate of about 19 036 W/m2,while the heat insulation disc absorbs heat radiation at a maximum rate of about 7922 W/m2,which indicates the effectiveness of heat insulation of the asbestos pad.Transient heat transfer film coefficient and its distribution,which are difficult to be measured experimentally are also obtained through numerical simulation.At 240 s,the heat transfer film coefficient in the surface of the transducer ranges from–17.86 to 20.17 W/(m2?K).Compared with the trial and error method based on the test,the proposed research provides a more effective way in the design and analysis of the temperature control of the molten metal treatment system.
文摘Objective The gene expression of skeletal muscle under ischemic condition by direct gene injectionwas observed in order to find a new gene delivery method to treat chronic arterial occlusion disease. Methods Weestablished the rabbit hindlimb ischemic model and used plasmid PSV-β-gal as a reporter gene. We transferedgene intramuscularly and detected the activity of β-galactosidase by histochemistry method. Results Weobserved that the gene expression of skeletal muscle under ischemic condition was higher than normalmuscle. Conclusion The result demonstrated that the direct gene injection was suitable for the chronic peripheralarterial occlusion disease, and might be a novel gene delivery method for this disease.
文摘This paper presents a combined finite element method for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow. The streamline upwind finite element method is used for the analysis of thermal viscous flow in the fluid region, whereas the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components, the pressure and the temperature. The main advantage of the proposed method is to consistently couple heat transfer along the fluid-solid interface. Three test cases, i.e. conjugate Couette flow problem in parallel plate channel, counter-flow in heat exchanger, and conjugate natural convection in a square cavity with a conducting wall, are selected to evaluate the efficiency of the present method.
文摘A better understanding of two-phase flows with evaporation allows leading to an optimal design of evaporators. For that purpose, numerical simulations are very useful. In this paper, a numerical study has been carried out in order to model and simulate the combination of a two-phase flow with evaporation in a vertical tube. The VOF (volume-of-fluid) multiphase flow method and a phase-change model for the mass transfer have been used. For an accurate modeling, the effect of axial conduction has been also taken into account using a conjugate heat transfer model. Since thermal oscillations are undesirable as they can lead to the failure of the tube, flow instabilities have also been analyzed, using FFT (fast Fourier transforms), in order to comprehend their behavior and influence. A control study of the flow instabilities in the tube is also presented. For that purpose tube inlet temperature has been varied using a gain control parameter.
基金This project was supported by a grant from the NaturalSciences Foundation of Hubei Province(No.97J0 70 )
文摘The method of gene transfer into corneal endothelium was investigated to provide a foundation for the study of TGF-β1 gene transfer to inhibit corneal graft rejection.Two days after direct injection of p MAM TGF-β1 mediated by liposom e into the anterior cham ber of rabbits,one half of corneas were made into paraffin slides and the endothelial layer was carefully torn from the other half to make a single layer slide of endothelia.By means of im munohistochemical technique, the plasmid p MAM TGF- β1 expression product TGF- β1 in the endothelia was detected.Specific TGF- β1 expression was positive in the endothelia on both the paraffin slide and the single layer slide.The results showed that by direct injection into the anterior cham ber,foreign plasmid DNA could be transferred into the endothelia and its expression was obtained.This may provide a foun- dation for further study on TGF-β1 participating in local induction of corneal imm une tolerance.
基金The project supported by the National Natural Science Foundation of China (19889209)Russian Foundation for Basic Research (97-02-16943)
文摘Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow. The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency.
文摘Antimicrobial susceptibility test was performed on 57 clinical isolates of P. aeruginosa and 36 clinical isolates of Acinetobacter with 11 antimicrobial agents including getamicin, amikacin, ciprofloxacin, ofloxacin, fleroxacin, piperacillin, cefotaxime, cefoperazone/sulbactam, ceftazidime, cefoperazone and doxycycline. Transferable drug resistance plasmid carrying rates of these clinical isolates were also studied. On the basis of the in vitro activities, 52.63%(30/57) of the isolated strains of P. aeruginosa were susceptible to antimicrobial agents selected (except doxycycline), 41.67%(15/36) of the isolated strains of Acinetobacter were susceptible to 11 antimicrobial agents. The sensitivity rate of P.aeruginosa and Acinetobacter to antimicrobial agents selected was 70% or greater to all except doxycycline. Furthermore, the sensitivity rate of P.aeruginosa to amikacin ciprofloxacin, ceftazidime, cefoperazone, cefoperazone/sulbactam, and that of Acinetobacter to cefoperazone/sulbactam, amikacin was more than 90%,among them amikacin, cefoperazone/sulbactam being the most effective. Plasmid analysis showed that 15.79%(9/57) P.aeruginosa strains and 13.89%(5/36) Acinetobacter strains carried plasmid. Conjugative plasmid carrying rates of P. aeruginosa strains and Acinetobacter strains were 7.02%(4/57), 13.89%(5/36), respectively. Conjugative plasmid didn′t play an important role in the formation and dissemination of drug resistance of P. aeruginosa and Acinetobacter.
基金Project supported by the National Natural Science Foundation of China(Grant No.51476043)the Major National Scientific Instruments and Equipment Development Special Foundation of China(Grant No.51327803)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.51121004)
文摘Reconstructing the distribution of optical parameters in the participating medium based on the frequency-domain radiative transfer equation (FD-RTE) to probe the internal structure of the medium is investigated in the present work. The forward model of FD-RTE is solved via the finite volume method (FVM). The regularization term formatted by the generalized Gaussian Markov random field model is used in the objective function to overcome the ill-posed nature of the inverse problem. The multi-start conjugate gradient (MCG) method is employed to search the minimum of the objective function and increase the efficiency of convergence. A modified adjoint differentiation technique using the collimated radiative intensity is developed to calculate the gradient of the objective function with respect to the optical parameters. All simulation results show that the proposed reconstruction algorithm based on FD-RTE can obtain the accurate distributions of absorption and scattering coefficients. The reconstructed images of the scattering coefficient have less errors than those of the absorption coefficient, which indicates the former are more suitable to probing the inner structure.
文摘Summary: To construct basic fibroblast growth factor (bFGF) eukaryotic expression vector and to evaluate the possibility of bFGF gene therapy in orthopedic disease, the pCD-rbFGF recombinant plasmid was constructed by cloning rat basic fibroblast growth factor (bFGF) cDNA into an eukaryotic expression vector, pcDNA 3. Rat osteoblasts were transfected with pCD-rbFGF plasmid by lopofectin mediated gene transfer, the transient expression was detected by streptavidin-biotin-enzyme complex (SABC) method. It was observed that the expression of rat bFGF gene was detected 72 h after transfected distinctly. Basic fibroblast growth factor gene therapy is a method of potential for a wide array of orthopedic diseases.
文摘Factor Ⅷ deficiency or hemophilia A is X-linkedgenetic disorder in human. General treatment of severehemophilia A consists of adiministration of plasma-derived or recombinant clotting factor concentrates. Ithas caused a series of problems, i. e. viral infection andcost too much to use rF Ⅷ. Nowadays, people havedeveloped the retroviral vector and the adcnoviral
基金Sponsored by the National Natural Science Foundation of China( Grant No. 50576017)
文摘This paper studied a certain blade with ten radial cooling holes which employed conjugate heat transfer method. The cooling air entered the cooling channel from the bottom of the blade and went out from the top, it was not ejected into the main flow. This paper used different numerical conditions including different turbulence models,turbulence intensities,thermal conduction coefficients and the influence on fluid property via temperature variation. The temperature distribution and pressure distribution of the blade were compared with experimental data. The results show that the numerical results using different turbulence models are almost identical to experimental data even little deviation occurs at shock wave location. The trends of temperature distribution under different numerical conditions are coincident to experimental data,especially Reynolds stress turbulence model. It can be concluded that anisotropic turbulence models can simulate the transition from laminar to turbulence,and the influence of turbulence intensity on laminar region and transition region is more than that on developed turbulent region.
基金Supported by the Yunnan Provincial Science and Technology Department (2003A0003M)
文摘The ab initio method has been used to study the 1-3 H transfer reaction on formamidine substituted by halogen. The calculation results show that the substituted halogen has two effects on the 1-3 H transfer reaction: decreasing the activation energy and stabilizing the C=N double bond owing to the conjugative effect of p-π-p of products and transition states.