Helicobacter pylori (H. pylori) is a Gram-negative bacterium with a number of virulence factors, such as cytotoxin-associated gene A, vacuolating cytotoxin A, its pathogenicity island, and lipopolysaccharide, which ca...Helicobacter pylori (H. pylori) is a Gram-negative bacterium with a number of virulence factors, such as cytotoxin-associated gene A, vacuolating cytotoxin A, its pathogenicity island, and lipopolysaccharide, which cause gastrointestinal diseases. Connexins function in gap junctional homeostasis, and their downregulation is closely related to gastric carcinogenesis. Investigations into H. pylori infection and the fine-tuning of connexins in cells or tissues have been reported in previous studies. Therefore, in this review, the potential mechanisms of H. pylori-induced gastric cancer through connexins are summarized in detail.展开更多
Both neurons and glia throughout the central nervous system are organized into networks by gap junctions. Among glia, gap junctions facilitate metabolic homeostasis and intercellular communication. Among neurons, gap ...Both neurons and glia throughout the central nervous system are organized into networks by gap junctions. Among glia, gap junctions facilitate metabolic homeostasis and intercellular communication. Among neurons, gap junctions form electrical synapses that function primarily for communication. However, in neurodegenerative states due to disease or injury gap junctions may be detrimental to survival. Electrical synapses may facilitate hyperactivity and bystander killing among neurons, while gap junction hemichannels in glia may facilitate inflammatory signaling and scar formation. Advances in understanding mechanisms of plasticity of electrical synapses and development of molecular therapeutics to target glial gap junctions and hemichannels offer new hope to pharmacologically limit neuronal degeneration and enhance recovery.展开更多
Connexins family in humans consists of 21 highly conserved proteins that are responsible for contact formation between cells. On the cell surface, connexins form hemichannels, or connexons. Two hemichannels brought to...Connexins family in humans consists of 21 highly conserved proteins that are responsible for contact formation between cells. On the cell surface, connexins form hemichannels, or connexons. Two hemichannels brought together form a gap junction, a form of intercellular contact that allows for direct transfer of material and signals between the adjacent cells. Gap junctions serve for transporting ions and other soluble, low molecular weight molecules therefore synchronizing the microenvironment of the contacting cells and maintaining cell and tissue homeostasis. Impairment of gap junctions is associated with different pathological conditions. Importantly, it has been described in atherosclerosis, which causes local cellular dysfunction in the arterial wall tissues followed by the development of atherosclerotic plaque. There are 3 main connexins expressed in human cardiovascular system: Cx37, Cx40, and Cx43. Alterations in the arterial wall cells observed in atherosclerosis include changes in the expression pattern of the main connexins and impairment of intercellular contacts and communication. According to the currently available data, Cx37 and Cx40 have anti-atherogenic and vasculoprotective properties, while Cx43 appears to be more pro-atherogenic. However, the effects of connexins are cell type-dependent and in many cases, remain to be studied in detail. In this review, we summarize the available knowledge on connexins of the arterial wall cells involved in atherosclerosis development.展开更多
基金supported by the “New Xiangya Talent Projects” of the Third Xiangya Hospital of Central South University (JY201710)
文摘Helicobacter pylori (H. pylori) is a Gram-negative bacterium with a number of virulence factors, such as cytotoxin-associated gene A, vacuolating cytotoxin A, its pathogenicity island, and lipopolysaccharide, which cause gastrointestinal diseases. Connexins function in gap junctional homeostasis, and their downregulation is closely related to gastric carcinogenesis. Investigations into H. pylori infection and the fine-tuning of connexins in cells or tissues have been reported in previous studies. Therefore, in this review, the potential mechanisms of H. pylori-induced gastric cancer through connexins are summarized in detail.
基金supported by NIH grant R01EY012857(JO)the Frederic B.Asche endowment and Research to Prevent Blindness.KBM is supported by T32EY007024
文摘Both neurons and glia throughout the central nervous system are organized into networks by gap junctions. Among glia, gap junctions facilitate metabolic homeostasis and intercellular communication. Among neurons, gap junctions form electrical synapses that function primarily for communication. However, in neurodegenerative states due to disease or injury gap junctions may be detrimental to survival. Electrical synapses may facilitate hyperactivity and bystander killing among neurons, while gap junction hemichannels in glia may facilitate inflammatory signaling and scar formation. Advances in understanding mechanisms of plasticity of electrical synapses and development of molecular therapeutics to target glial gap junctions and hemichannels offer new hope to pharmacologically limit neuronal degeneration and enhance recovery.
基金the Russian Science Foundation (Grant # 18-15-00254).
文摘Connexins family in humans consists of 21 highly conserved proteins that are responsible for contact formation between cells. On the cell surface, connexins form hemichannels, or connexons. Two hemichannels brought together form a gap junction, a form of intercellular contact that allows for direct transfer of material and signals between the adjacent cells. Gap junctions serve for transporting ions and other soluble, low molecular weight molecules therefore synchronizing the microenvironment of the contacting cells and maintaining cell and tissue homeostasis. Impairment of gap junctions is associated with different pathological conditions. Importantly, it has been described in atherosclerosis, which causes local cellular dysfunction in the arterial wall tissues followed by the development of atherosclerotic plaque. There are 3 main connexins expressed in human cardiovascular system: Cx37, Cx40, and Cx43. Alterations in the arterial wall cells observed in atherosclerosis include changes in the expression pattern of the main connexins and impairment of intercellular contacts and communication. According to the currently available data, Cx37 and Cx40 have anti-atherogenic and vasculoprotective properties, while Cx43 appears to be more pro-atherogenic. However, the effects of connexins are cell type-dependent and in many cases, remain to be studied in detail. In this review, we summarize the available knowledge on connexins of the arterial wall cells involved in atherosclerosis development.