In order to investigate the effect of temperature on hatching result of fertilized peacock eggs, they were hatched under conditions of varying temperature and constant temperature respectively. The result shows that t...In order to investigate the effect of temperature on hatching result of fertilized peacock eggs, they were hatched under conditions of varying temperature and constant temperature respectively. The result shows that the hatching rate in the varying temperature treatment group (Group Ⅰ) is higher than that in the constant temperature treatment group (Group Ⅱ). It suggests that the varying temperature treatment (high temperature in the early period, medium temperature in the middle period, slightly lower temperature in the late period, and slightly higher temperature in the hulling period) is in line with the optimum temperature variation in the hatching of fertilized peacock eggs, contributing the hatching of fertilized peacock eggs.展开更多
Different from the traditional hydraulic oil cooling method,a new type of constant temperature oil tank cooling system based on semiconductor refrigeration technology is designed. This paper studies the principle of s...Different from the traditional hydraulic oil cooling method,a new type of constant temperature oil tank cooling system based on semiconductor refrigeration technology is designed. This paper studies the principle of semiconductor refrigeration and establishes a heat transfer model. Semiconductor cooler on piping refrigeration is simulated,and influence of the parameters on the outlet temperature,such as pipe pressure difference of inlet and outlet,pipe length,pipe radius,are gotten,and then hydraulic tank semiconductor refrigeration system is proposed. The semiconductor refrigeration system can control temperature at 37 ± 1°C.展开更多
A new experiment was made on the developing of bed separations and mining subsidence from Tangshan T2192 working face by equivalent materials simulation.The overburden deformation and the developing of bed separations...A new experiment was made on the developing of bed separations and mining subsidence from Tangshan T2192 working face by equivalent materials simulation.The overburden deformation and the developing of bed separations with working face advanc- ing was simulated by a new model.The results show that the maximum value of bed separations moved forward gradually along with the working face advancing;the maxi- mum value of bed separations is 0.31~0.50 times of mining thickness.The key strata have a great influence upon surface subsidence during the overburden movement process.The mechanics parameters of new experiment are fitted with results in fields perfectly.展开更多
The dynamic evolution of microstructure and the characteristics of deformation , as well as the relationshipbetween them have ben studied for TCll alloy with different original conditions, including as-cast, as-rolled...The dynamic evolution of microstructure and the characteristics of deformation , as well as the relationshipbetween them have ben studied for TCll alloy with different original conditions, including as-cast, as-rolled ,as-forged and as-predeformed on casting, during comparison at constant temperature (CCT). The resultsshow that (1) Micrcotructural process during CCT of cast TCll comprises two stages: (i) Founding ofu dynamic equilibrium ”. Original coarse structure breaks up and becomes equiaxed, while the stras decreasesaccordingly. The microstructure gradually trends towards some kind of “dynamic ellullibrium” morphology;(ii) Keeping of “dynamic equilibrium”. Both stress and micrcostructural morphology preserve stable althoughdeformation continues. (2) The final pouilibrium morphology das not depend on its initial microstructure, buton the parameter Z(T, e) .展开更多
Objective:To explore the clinical application effect of self-designed automatic constant temperature moxibustion box.Methods:From June 2016 to January 2017,150 patients with neck,shoulder,back and leg pain admitted to...Objective:To explore the clinical application effect of self-designed automatic constant temperature moxibustion box.Methods:From June 2016 to January 2017,150 patients with neck,shoulder,back and leg pain admitted to our hospital were treated with moxibustion under the informed consent of the patients.The patients were randomly divided into control group and observation group,75 cases each.The group used traditional moxibustion box for moxibustion treatment,and the observation group used automatic constant temperature moxibustion box for moxibustion treatment for 15 days.After the treatment,the patient's safety,comfort,satisfaction and adverse reactions were compared,and the results were analyzed using SPSS 20 statistical software.Results:The comfort and satisfaction in study group were all superior to that of control group,with statistically significant difference(P<0.01).For patient's safety,the ratio of patients suffered from scald in study and control groups was 5.3/100 and 0,respectively.Conclusions:It is of great significance for improving clinical efficacy and preventing medical risks.It is worthy of clinical application.展开更多
An alternate non-Fourier heat conduction equation is derived from consideration of translation motion of spinless electron under a driving force due to an applied temperature gradient. This equation is a eapite ad cal...An alternate non-Fourier heat conduction equation is derived from consideration of translation motion of spinless electron under a driving force due to an applied temperature gradient. This equation is a eapite ad calcem,temperature. Elimination of the rate of change of velocity with respect to time leads to a non-Fourier heat conduction equation with a accumulation of temperature or ballistic term in it. The new constitutive heat conduction equation is combined with the energy balance equation in one dimension. The governing equation for transient temperature a partial differential equation (Eq. (23)) is solved for by the method of Laplace transforms. The problem considered is the semi-infinite medium with constant thermo physical properties with constant wall temperature boundary condition. A closed form analyticalexpression for the transient temperature was obtained (Eq. (36)) after truncation of higher order terms in the infinite binomial series and use of convolution and lag properties. This solution is compared with that obtained using the parabolic Fourier model and the damped wave model as presented in an earlier study. The predictions of Eq. (36) are closer to the Fourier model. The convex nature of the temperature curve is present.展开更多
We report an improved method for the preparation of highly dense nickelate ceramics at relatively low temperature. It is found that the introduction of appropriate additives during the ball-milling process facilitates...We report an improved method for the preparation of highly dense nickelate ceramics at relatively low temperature. It is found that the introduction of appropriate additives during the ball-milling process facilitates the formation of nickelate phase through solid state reaction. Moreover, although high-purity nickelate powders can only be obtained by calcining the mixture of starting materials at temperature higher than 1100 ℃. The adoption of powders calcined at 1000 ℃, rather than those calcined at higher temperature, is conductive to the low-temperature densification of nickelate ceramics, which is attributed to the small and dispersive particles, and the solid state reaction of the residual starting materials during sintering. Compared with the conventional process, the improved method can reduce the sintering temperature of nickelate ceramics by about 100 ℃ and decrease the grain size of the obtained ceramics, and therefore makes nickelate meet the fabrication requirements of multi-layer ceramic capacitors(MLCC).展开更多
We discuss in this paper a novel interpretation of Born rule as an approximated thermodynamic law which emerges from the interaction of a quantum system with a non-stationary thermal bath associated to vacuum fluctuat...We discuss in this paper a novel interpretation of Born rule as an approximated thermodynamic law which emerges from the interaction of a quantum system with a non-stationary thermal bath associated to vacuum fluctuations induced by external environment radiation. In particular we assume that vacuum polarization is a real non relativistic phenomena caused by hidden vacuum charge oscillations which diffuses heat energy in a dispersive and dissipative dielectric medium with a temperature dependent speed of propagation. We propose a model which couples vacuum wavefunctions to vacuum charge fluctuations and we deduce a temperature dependent running fine structure constant function proportional, at first approximation, to the squared of the effective electron charge and compatible with known experimental data. We interpret the vacuum symmetry breaking energy fluctuations induced in scattering experiments of particle physics and in laser assisted nuclear reactions as thermal quasi-monochromatic beams produced by the decay of hidden non equilibrium massive photons propagating with a variable light speed. We suggest, exploiting an old analogy between plasmons and pseudo Goldstone bosons, to interpret heat diffusion of this non relativistic polarized vacuum as a real De Broglie electromagnetic scalar wave associated to the radiation emitted by the hidden massive photons with acceleration proportional to vacuum Unruh like temperature. We predict a temperature dependent deviation from Coulomb law and a generalized dispersive law of these hidden unstable photons that could be revealed as not stationary coloured noise in experiments on anomalous heat diffusions associated to the decay of unstable accelerated pairs produced in nuclear physics experiments. We discuss then how our proposal of a temperature dependent non relativistic vacuum polarization might be applied to deduce a dynamic generalization of Born rule based on a realistic interpretation of quantum wavefunctions as averaged electromagnetic waves of hidden massive photons. Finally we suggest to test our time asymmetric model looking for very fast oscillating polarization thermal waves emitted during the not instantaneous wavefunction collapse and revealed as not stationary bulk heating effects in experiments on accelerated conductors and nanoconductors.展开更多
The effect of curing regime on degree ofAl3+ substituting for Si^4+ (Al/Si ratio) in C-S-H gels of hardened Portland cement pastes was investigated by 29Si magic angel spinning (MAS) nuclear magnetic resonance ...The effect of curing regime on degree ofAl3+ substituting for Si^4+ (Al/Si ratio) in C-S-H gels of hardened Portland cement pastes was investigated by 29Si magic angel spinning (MAS) nuclear magnetic resonance (NMR) with deconvolution technique. The curing regimes included the constant temperature (20, 40, 60 and 80 ℃) and variable temperature (simulated internal temperature of mass concrete with 60 ℃ peak). The results indicate that constant temperature of 20 ℃ is beneficial to substitution ofAl3+ for Si4+, and AI/Si ratio changes to be steady after 180 d. The increase of Al/Si ratio at 40 ℃is less than that at 20℃ for 28 d. The other three regimes of high temperature increase Al/Si ratio only before 3 d, on the contrary to that from 3 to 28 d. However, the 20 ℃ curing stage from 28 to 180 d at variable temperature regime, is beneficial to the increase of AI/Si ratio which is still lower than that at constant temperature regime of 20 ℃ for the same age. A nonlinear relation exists between the Al/Si ratio and temperature variation or mean chain length (MCL) of C-S-H gels, furthermore, the amount ofAl3+ which can occupy the bridging tetrahedra sites in C-S-H structure is insufficient in hardened Portland cement pastes.展开更多
This paper presents a mathematical algorithm that determines the fluid flow velocity vector (direction, intensity and orientation), based on measured voltages on multi-channel hot-wire anemometer. As the voltage on ...This paper presents a mathematical algorithm that determines the fluid flow velocity vector (direction, intensity and orientation), based on measured voltages on multi-channel hot-wire anemometer. As the voltage on Constant Temperature hot-wire Anemometer (CTA) is non-linear function of velocity and angle of the fluid, inverse function is also non-linear and has several mathematically correct solutions. In the Laboratory of Non-linear Mechanics at the Faculty of Mechanical Engineering in Ljubljana, the authors have decided to try developing multi-charmel hot-wire anemometer with constant temperature at which it is possible to select physically correct solutions from several mathematically correct solutions. The mathematical algorithm works correctly if the range of instrument operation is limited for the value of spherical angles |φ|≤ 60°and |ψ|'1 ≤ 58°.展开更多
Sodium carbonate and carboxymethyl cellulose powders are compressed into two-component tablets with three mass ratios,97%:3%,95%:5% and 93%:7%.The dissolution tests for two-component tablets and reference pure sodium ...Sodium carbonate and carboxymethyl cellulose powders are compressed into two-component tablets with three mass ratios,97%:3%,95%:5% and 93%:7%.The dissolution tests for two-component tablets and reference pure sodium carbonate tablets are carried out at various temperatures.The dissolution process of each tablet is measured by electrical conductivity tracking method and the concentration of dissolved sodium carbonate is quanti fied with calibrated conductivity-concentration converting equation of sodium carbonate.The quanti fied dissolution data is fitted with both surface reaction model and diffusion layer model and the results clearly show that surface reaction model is suggested as the appropriate dissolution model for all measured tablets.Therefore,it is determined that carboxymethyl cellulose is a stable element to remain the dissolution mechanism of tablet unchanged.The dissolution rate constant quanti fied with surface reaction model presents that carboxymethyl cellulose-sodium carbonate two-component tablets obtain signi ficant higher dissolution rate constant than pure sodium carbonate tablet and higher proportion of carboxymethyl cellulose leads to apparent higher dissolution rate constant.The results prove for the usage of carboxymethyl cellulose in most practical applications at a relative low-level,the effect of carboxymethyl cellulose is effective and positive for two-component tablet to enhance the dissolution process and improve dissolution rate constant and this effect is speculated coming from its dynamic physical transforming process in water including dilation and conglutination.展开更多
The work covers a novel approach to the description of the phenomenon of thermal expansion of solids. The reason for undertaking the scientific quest is presented to follow with the analysis of existing knowledge on t...The work covers a novel approach to the description of the phenomenon of thermal expansion of solids. The reason for undertaking the scientific quest is presented to follow with the analysis of existing knowledge on the characteristics of phenomenon of thermal expansion of bodies being in the state of aggregation. A critical approach to the existing law of the linear thermal expansion is given. The paper presents an adequate approach to this considered phenomenon. The description provides parametric and functional characteristics of this phenomenon. The relationships of the coefficients of linear expansion on temperature for particular interstate zones, as well as the initial coefficients related to these zones, are presented. In the summary a synthesis of all actions and considerations with the directions to the adequate knowledge with advantage on the subjected phenomenon has been performed. It regards also to the latest thermal characteristics of solids, referred to the phase transformations. All they are realized by dilatometric studies together with determination of curves of thermal expansions of solids.展开更多
The.thermal stability characteristics of kerosine-type fuels are examined using a heated-tube apparatus which allows independent control of fuel pressure,fuel temperature,tube-wall temperature and fuel flow rate.This ...The.thermal stability characteristics of kerosine-type fuels are examined using a heated-tube apparatus which allows independent control of fuel pressure,fuel temperature,tube-wall temperature and fuel flow rate.This method is identified simply as a“constant wall temperature method”.It is different from a previous widely used method,which is identified as a“constant heat flux method”.It is a single-pass system.Rate of deposition on the tube walls are measured by weighing the test tube before and after each test. For a fuel temperature of 250℃,it is found that deposition rates increase continuously with increase in tube- wall temperature.This finding contradicts the results of previous studies which had led to the conclusion that deposition rates increase with increase in wall temperature up to a certain value(around 650 K)beyond which any further increase in wall temperature causes the rate of deposition to decline. The present results show clearly that the constant wall temperature method is more suitable for assessing the thermal stability of gas turbine fuels.展开更多
基金Supported by Scientific and Technological Development General Program of Beijing Municipal Education Commission(KM201412448004)~~
文摘In order to investigate the effect of temperature on hatching result of fertilized peacock eggs, they were hatched under conditions of varying temperature and constant temperature respectively. The result shows that the hatching rate in the varying temperature treatment group (Group Ⅰ) is higher than that in the constant temperature treatment group (Group Ⅱ). It suggests that the varying temperature treatment (high temperature in the early period, medium temperature in the middle period, slightly lower temperature in the late period, and slightly higher temperature in the hulling period) is in line with the optimum temperature variation in the hatching of fertilized peacock eggs, contributing the hatching of fertilized peacock eggs.
基金Supported by the National Natural Science Foundation of China(No.51175448,51405424)
文摘Different from the traditional hydraulic oil cooling method,a new type of constant temperature oil tank cooling system based on semiconductor refrigeration technology is designed. This paper studies the principle of semiconductor refrigeration and establishes a heat transfer model. Semiconductor cooler on piping refrigeration is simulated,and influence of the parameters on the outlet temperature,such as pipe pressure difference of inlet and outlet,pipe length,pipe radius,are gotten,and then hydraulic tank semiconductor refrigeration system is proposed. The semiconductor refrigeration system can control temperature at 37 ± 1°C.
基金The National Natural Science Funds Committee(50174035)
文摘A new experiment was made on the developing of bed separations and mining subsidence from Tangshan T2192 working face by equivalent materials simulation.The overburden deformation and the developing of bed separations with working face advanc- ing was simulated by a new model.The results show that the maximum value of bed separations moved forward gradually along with the working face advancing;the maxi- mum value of bed separations is 0.31~0.50 times of mining thickness.The key strata have a great influence upon surface subsidence during the overburden movement process.The mechanics parameters of new experiment are fitted with results in fields perfectly.
文摘The dynamic evolution of microstructure and the characteristics of deformation , as well as the relationshipbetween them have ben studied for TCll alloy with different original conditions, including as-cast, as-rolled ,as-forged and as-predeformed on casting, during comparison at constant temperature (CCT). The resultsshow that (1) Micrcotructural process during CCT of cast TCll comprises two stages: (i) Founding ofu dynamic equilibrium ”. Original coarse structure breaks up and becomes equiaxed, while the stras decreasesaccordingly. The microstructure gradually trends towards some kind of “dynamic ellullibrium” morphology;(ii) Keeping of “dynamic equilibrium”. Both stress and micrcostructural morphology preserve stable althoughdeformation continues. (2) The final pouilibrium morphology das not depend on its initial microstructure, buton the parameter Z(T, e) .
文摘Objective:To explore the clinical application effect of self-designed automatic constant temperature moxibustion box.Methods:From June 2016 to January 2017,150 patients with neck,shoulder,back and leg pain admitted to our hospital were treated with moxibustion under the informed consent of the patients.The patients were randomly divided into control group and observation group,75 cases each.The group used traditional moxibustion box for moxibustion treatment,and the observation group used automatic constant temperature moxibustion box for moxibustion treatment for 15 days.After the treatment,the patient's safety,comfort,satisfaction and adverse reactions were compared,and the results were analyzed using SPSS 20 statistical software.Results:The comfort and satisfaction in study group were all superior to that of control group,with statistically significant difference(P<0.01).For patient's safety,the ratio of patients suffered from scald in study and control groups was 5.3/100 and 0,respectively.Conclusions:It is of great significance for improving clinical efficacy and preventing medical risks.It is worthy of clinical application.
文摘An alternate non-Fourier heat conduction equation is derived from consideration of translation motion of spinless electron under a driving force due to an applied temperature gradient. This equation is a eapite ad calcem,temperature. Elimination of the rate of change of velocity with respect to time leads to a non-Fourier heat conduction equation with a accumulation of temperature or ballistic term in it. The new constitutive heat conduction equation is combined with the energy balance equation in one dimension. The governing equation for transient temperature a partial differential equation (Eq. (23)) is solved for by the method of Laplace transforms. The problem considered is the semi-infinite medium with constant thermo physical properties with constant wall temperature boundary condition. A closed form analyticalexpression for the transient temperature was obtained (Eq. (36)) after truncation of higher order terms in the infinite binomial series and use of convolution and lag properties. This solution is compared with that obtained using the parabolic Fourier model and the damped wave model as presented in an earlier study. The predictions of Eq. (36) are closer to the Fourier model. The convex nature of the temperature curve is present.
基金supported by the Natural Science Foundation of Fujian Province(2015j01231)the Chunmiao Project of Haixi Institute of Chinese Academy of Sciences(CMZX-2014-005)the National Key Research and Development Program of China(2016YFB0701003)
文摘We report an improved method for the preparation of highly dense nickelate ceramics at relatively low temperature. It is found that the introduction of appropriate additives during the ball-milling process facilitates the formation of nickelate phase through solid state reaction. Moreover, although high-purity nickelate powders can only be obtained by calcining the mixture of starting materials at temperature higher than 1100 ℃. The adoption of powders calcined at 1000 ℃, rather than those calcined at higher temperature, is conductive to the low-temperature densification of nickelate ceramics, which is attributed to the small and dispersive particles, and the solid state reaction of the residual starting materials during sintering. Compared with the conventional process, the improved method can reduce the sintering temperature of nickelate ceramics by about 100 ℃ and decrease the grain size of the obtained ceramics, and therefore makes nickelate meet the fabrication requirements of multi-layer ceramic capacitors(MLCC).
文摘We discuss in this paper a novel interpretation of Born rule as an approximated thermodynamic law which emerges from the interaction of a quantum system with a non-stationary thermal bath associated to vacuum fluctuations induced by external environment radiation. In particular we assume that vacuum polarization is a real non relativistic phenomena caused by hidden vacuum charge oscillations which diffuses heat energy in a dispersive and dissipative dielectric medium with a temperature dependent speed of propagation. We propose a model which couples vacuum wavefunctions to vacuum charge fluctuations and we deduce a temperature dependent running fine structure constant function proportional, at first approximation, to the squared of the effective electron charge and compatible with known experimental data. We interpret the vacuum symmetry breaking energy fluctuations induced in scattering experiments of particle physics and in laser assisted nuclear reactions as thermal quasi-monochromatic beams produced by the decay of hidden non equilibrium massive photons propagating with a variable light speed. We suggest, exploiting an old analogy between plasmons and pseudo Goldstone bosons, to interpret heat diffusion of this non relativistic polarized vacuum as a real De Broglie electromagnetic scalar wave associated to the radiation emitted by the hidden massive photons with acceleration proportional to vacuum Unruh like temperature. We predict a temperature dependent deviation from Coulomb law and a generalized dispersive law of these hidden unstable photons that could be revealed as not stationary coloured noise in experiments on anomalous heat diffusions associated to the decay of unstable accelerated pairs produced in nuclear physics experiments. We discuss then how our proposal of a temperature dependent non relativistic vacuum polarization might be applied to deduce a dynamic generalization of Born rule based on a realistic interpretation of quantum wavefunctions as averaged electromagnetic waves of hidden massive photons. Finally we suggest to test our time asymmetric model looking for very fast oscillating polarization thermal waves emitted during the not instantaneous wavefunction collapse and revealed as not stationary bulk heating effects in experiments on accelerated conductors and nanoconductors.
基金Funded by the Major State Basic Research Development Program of China(973 Program)(No.2009CB623201)National Natural Science Foundation of China(No.51302070)
文摘The effect of curing regime on degree ofAl3+ substituting for Si^4+ (Al/Si ratio) in C-S-H gels of hardened Portland cement pastes was investigated by 29Si magic angel spinning (MAS) nuclear magnetic resonance (NMR) with deconvolution technique. The curing regimes included the constant temperature (20, 40, 60 and 80 ℃) and variable temperature (simulated internal temperature of mass concrete with 60 ℃ peak). The results indicate that constant temperature of 20 ℃ is beneficial to substitution ofAl3+ for Si4+, and AI/Si ratio changes to be steady after 180 d. The increase of Al/Si ratio at 40 ℃is less than that at 20℃ for 28 d. The other three regimes of high temperature increase Al/Si ratio only before 3 d, on the contrary to that from 3 to 28 d. However, the 20 ℃ curing stage from 28 to 180 d at variable temperature regime, is beneficial to the increase of AI/Si ratio which is still lower than that at constant temperature regime of 20 ℃ for the same age. A nonlinear relation exists between the Al/Si ratio and temperature variation or mean chain length (MCL) of C-S-H gels, furthermore, the amount ofAl3+ which can occupy the bridging tetrahedra sites in C-S-H structure is insufficient in hardened Portland cement pastes.
文摘This paper presents a mathematical algorithm that determines the fluid flow velocity vector (direction, intensity and orientation), based on measured voltages on multi-channel hot-wire anemometer. As the voltage on Constant Temperature hot-wire Anemometer (CTA) is non-linear function of velocity and angle of the fluid, inverse function is also non-linear and has several mathematically correct solutions. In the Laboratory of Non-linear Mechanics at the Faculty of Mechanical Engineering in Ljubljana, the authors have decided to try developing multi-charmel hot-wire anemometer with constant temperature at which it is possible to select physically correct solutions from several mathematically correct solutions. The mathematical algorithm works correctly if the range of instrument operation is limited for the value of spherical angles |φ|≤ 60°and |ψ|'1 ≤ 58°.
基金the Institute of Particle and Science Engineering,University of Leeds and Procter & Gamble Newcastle Innovation Centre(UK) for partially funding the project
文摘Sodium carbonate and carboxymethyl cellulose powders are compressed into two-component tablets with three mass ratios,97%:3%,95%:5% and 93%:7%.The dissolution tests for two-component tablets and reference pure sodium carbonate tablets are carried out at various temperatures.The dissolution process of each tablet is measured by electrical conductivity tracking method and the concentration of dissolved sodium carbonate is quanti fied with calibrated conductivity-concentration converting equation of sodium carbonate.The quanti fied dissolution data is fitted with both surface reaction model and diffusion layer model and the results clearly show that surface reaction model is suggested as the appropriate dissolution model for all measured tablets.Therefore,it is determined that carboxymethyl cellulose is a stable element to remain the dissolution mechanism of tablet unchanged.The dissolution rate constant quanti fied with surface reaction model presents that carboxymethyl cellulose-sodium carbonate two-component tablets obtain signi ficant higher dissolution rate constant than pure sodium carbonate tablet and higher proportion of carboxymethyl cellulose leads to apparent higher dissolution rate constant.The results prove for the usage of carboxymethyl cellulose in most practical applications at a relative low-level,the effect of carboxymethyl cellulose is effective and positive for two-component tablet to enhance the dissolution process and improve dissolution rate constant and this effect is speculated coming from its dynamic physical transforming process in water including dilation and conglutination.
文摘The work covers a novel approach to the description of the phenomenon of thermal expansion of solids. The reason for undertaking the scientific quest is presented to follow with the analysis of existing knowledge on the characteristics of phenomenon of thermal expansion of bodies being in the state of aggregation. A critical approach to the existing law of the linear thermal expansion is given. The paper presents an adequate approach to this considered phenomenon. The description provides parametric and functional characteristics of this phenomenon. The relationships of the coefficients of linear expansion on temperature for particular interstate zones, as well as the initial coefficients related to these zones, are presented. In the summary a synthesis of all actions and considerations with the directions to the adequate knowledge with advantage on the subjected phenomenon has been performed. It regards also to the latest thermal characteristics of solids, referred to the phase transformations. All they are realized by dilatometric studies together with determination of curves of thermal expansions of solids.
文摘The.thermal stability characteristics of kerosine-type fuels are examined using a heated-tube apparatus which allows independent control of fuel pressure,fuel temperature,tube-wall temperature and fuel flow rate.This method is identified simply as a“constant wall temperature method”.It is different from a previous widely used method,which is identified as a“constant heat flux method”.It is a single-pass system.Rate of deposition on the tube walls are measured by weighing the test tube before and after each test. For a fuel temperature of 250℃,it is found that deposition rates increase continuously with increase in tube- wall temperature.This finding contradicts the results of previous studies which had led to the conclusion that deposition rates increase with increase in wall temperature up to a certain value(around 650 K)beyond which any further increase in wall temperature causes the rate of deposition to decline. The present results show clearly that the constant wall temperature method is more suitable for assessing the thermal stability of gas turbine fuels.