The purpose of this paper is to reduce the error when measuring high dielectric constant materials.In this paper,the reason why the error introduced is analyzed firstly.Then,with HFSS,the method of choosing the size o...The purpose of this paper is to reduce the error when measuring high dielectric constant materials.In this paper,the reason why the error introduced is analyzed firstly.Then,with HFSS,the method of choosing the size of cavity and the dimension of dielectric materials is proposed.And several error correction curves are provided for measuring high dielectric constant materials.Finally,the experiment is conducted to validate the feasibility of our analysis.展开更多
The Newton gravitational constant is considered a cornerstone of modern gravity theory. Newton did not invent or use the gravity constant;it was invented in 1873, about the same time as it became standard to use the k...The Newton gravitational constant is considered a cornerstone of modern gravity theory. Newton did not invent or use the gravity constant;it was invented in 1873, about the same time as it became standard to use the kilogram mass definition. We will claim that G is just a term needed to correct the incomplete kilogram definition so to be able to make gravity predictions. But there is another way;namely, to directly use a more complete mass definition, something that in recent years has been introduced as collision-time and a corresponding energy called collision-length. The collision-length is quantum gravitational energy. We will clearly demonstrate that by working with mass and energy based on these new concepts, rather than kilogram and the gravitational constant, one can significantly reduce the uncertainty in most gravity predictions.展开更多
AIM: To evaluate the effect of different lens constant optimization methods on the accuracy of intraocular lens(IOL) power calculation formulas for highly myopic eyes.METHODS: This study comprised 108 eyes of 94 conse...AIM: To evaluate the effect of different lens constant optimization methods on the accuracy of intraocular lens(IOL) power calculation formulas for highly myopic eyes.METHODS: This study comprised 108 eyes of 94 consecutive patients with axial length(AL) over 26 mm undergoing phacoemulsification and implantation of a Rayner(Hove, UK) 920H IOL. Formulas were evaluated using the following lens constants: manufacturer’s lens constant, User Group for Laser Interference Biometry(ULIB) constant, and optimized constant for long eyes. Results were compared with Barrett Universal II formula, original Wang-Koch AL adjustment method, and modified Wang-Koch AL adjustment method. The outcomes assessed were mean absolute error(MAE) and percentage of eyes with IOL prediction errors within ±0.25, ±0.50, and ±1.0 diopter(D). The nonparametric method, Friedman test, was used to compare MAE performance among constants.RESULTS: Optimized constants could significantly reduce the MAE of SRK/T, Hoffer Q, and Holladay 1 formulas compared with manufacturer’s lens constant, whereas the percentage of eyes with IOL prediction errors within ±0.25, ±0.50, and ±1.0 D had no statistically significant differences. Optimized lens constant for long eyes alone showed non-significant refractive advantages over the ULIB constant. Barrett Universal II formula and formulas with AL adjustment showed significantly higher accuracy in highly myopic eyes(P<0.001). CONCLUSION: Lens constant optimization for the subset of long eyes reduces the refractive error only to a limited extent for highly myopic eyes.展开更多
A new mixed scheme which combines the variation of constants and the H1-Galerkin mixed finite element method is constructed for nonlinear Sobolev equation with nonlinear con- vection term. Optimal error estimates are ...A new mixed scheme which combines the variation of constants and the H1-Galerkin mixed finite element method is constructed for nonlinear Sobolev equation with nonlinear con- vection term. Optimal error estimates are derived for both semidiscrete and fully discrete schemes. Finally, some numerical results are given to confirm the theoretical analysis of the proposed method.展开更多
This paper investigates the effect of the Phase Angle Error of a Constant Amplitude Voltage signal in determining the Total Vector Error (TVE) of the Phasor Measurement Unit (PMU) using MATLAB/Simulink. The phase angl...This paper investigates the effect of the Phase Angle Error of a Constant Amplitude Voltage signal in determining the Total Vector Error (TVE) of the Phasor Measurement Unit (PMU) using MATLAB/Simulink. The phase angle error is measured as a function of time in microseconds at four points on the IEEE 14-bus system. When the 1 pps Global Positioning System (GPS) signal to the PMU is lost, sampling of voltage signals on the power grid is done at different rates as it is a function of time. The relationship between the PMU measured signal phase angle and the sampling rate is established by injecting a constant amplitude signal at two different points on the grid. In the simulation, 64 cycles per second is used as the reference while 24 cycles per second is used to represent the fault condition. Results show that a change in the sampling rate from 64 bps to 24 bps in the PMUs resulted in phase angle error in the voltage signals measured by the PMU at four VI Measurement points. The phase angle error measurement that was determined as a time function was used to determine the TVE. Results show that (TVE) was more than 1% in all the cases.展开更多
文摘The purpose of this paper is to reduce the error when measuring high dielectric constant materials.In this paper,the reason why the error introduced is analyzed firstly.Then,with HFSS,the method of choosing the size of cavity and the dimension of dielectric materials is proposed.And several error correction curves are provided for measuring high dielectric constant materials.Finally,the experiment is conducted to validate the feasibility of our analysis.
文摘The Newton gravitational constant is considered a cornerstone of modern gravity theory. Newton did not invent or use the gravity constant;it was invented in 1873, about the same time as it became standard to use the kilogram mass definition. We will claim that G is just a term needed to correct the incomplete kilogram definition so to be able to make gravity predictions. But there is another way;namely, to directly use a more complete mass definition, something that in recent years has been introduced as collision-time and a corresponding energy called collision-length. The collision-length is quantum gravitational energy. We will clearly demonstrate that by working with mass and energy based on these new concepts, rather than kilogram and the gravitational constant, one can significantly reduce the uncertainty in most gravity predictions.
基金Supported by National Natural Science Foundation of China(No.81770905)
文摘AIM: To evaluate the effect of different lens constant optimization methods on the accuracy of intraocular lens(IOL) power calculation formulas for highly myopic eyes.METHODS: This study comprised 108 eyes of 94 consecutive patients with axial length(AL) over 26 mm undergoing phacoemulsification and implantation of a Rayner(Hove, UK) 920H IOL. Formulas were evaluated using the following lens constants: manufacturer’s lens constant, User Group for Laser Interference Biometry(ULIB) constant, and optimized constant for long eyes. Results were compared with Barrett Universal II formula, original Wang-Koch AL adjustment method, and modified Wang-Koch AL adjustment method. The outcomes assessed were mean absolute error(MAE) and percentage of eyes with IOL prediction errors within ±0.25, ±0.50, and ±1.0 diopter(D). The nonparametric method, Friedman test, was used to compare MAE performance among constants.RESULTS: Optimized constants could significantly reduce the MAE of SRK/T, Hoffer Q, and Holladay 1 formulas compared with manufacturer’s lens constant, whereas the percentage of eyes with IOL prediction errors within ±0.25, ±0.50, and ±1.0 D had no statistically significant differences. Optimized lens constant for long eyes alone showed non-significant refractive advantages over the ULIB constant. Barrett Universal II formula and formulas with AL adjustment showed significantly higher accuracy in highly myopic eyes(P<0.001). CONCLUSION: Lens constant optimization for the subset of long eyes reduces the refractive error only to a limited extent for highly myopic eyes.
基金Supported by National Natural Science Fund of China (11061021)Key Project of Chinese Ministry of Education (12024)+2 种基金Natural Science Fund of Inner Mongolia Autonomous Region (2012MS0108,2012MS0106,2011BS0102)Scientific Research Projection of Higher Schools of Inner Mongolia (NJZZ12011,NJZY13199)Program of Higher-level talents of Inner Mongolia University (125119,Z200901004,30105-125132)
文摘A new mixed scheme which combines the variation of constants and the H1-Galerkin mixed finite element method is constructed for nonlinear Sobolev equation with nonlinear con- vection term. Optimal error estimates are derived for both semidiscrete and fully discrete schemes. Finally, some numerical results are given to confirm the theoretical analysis of the proposed method.
文摘This paper investigates the effect of the Phase Angle Error of a Constant Amplitude Voltage signal in determining the Total Vector Error (TVE) of the Phasor Measurement Unit (PMU) using MATLAB/Simulink. The phase angle error is measured as a function of time in microseconds at four points on the IEEE 14-bus system. When the 1 pps Global Positioning System (GPS) signal to the PMU is lost, sampling of voltage signals on the power grid is done at different rates as it is a function of time. The relationship between the PMU measured signal phase angle and the sampling rate is established by injecting a constant amplitude signal at two different points on the grid. In the simulation, 64 cycles per second is used as the reference while 24 cycles per second is used to represent the fault condition. Results show that a change in the sampling rate from 64 bps to 24 bps in the PMUs resulted in phase angle error in the voltage signals measured by the PMU at four VI Measurement points. The phase angle error measurement that was determined as a time function was used to determine the TVE. Results show that (TVE) was more than 1% in all the cases.
基金the Open Research Fund of Key Laboratory of Atmospheric Composition and Optical Radiation,Chinese Academy of Sciences(2013JJ01)National Natural Science Foundation of China(41005014,41205020)+2 种基金China Special Fund for Meteorological Research in the Public Interest(GYHY201206037)the Key Research Program of the Chinese Academy of Sciences(KJZDEW-TZ-G06-01)the Wanjiang Center for Development of Emerging Industrial Technology(12Z0104074)