期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Constrained Hamilton variational principle for shallow water problems and Zu-class symplectic algorithm 被引量:2
1
作者 Feng WU Wanxie ZHONG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第1期1-14,共14页
In this paper, the shallow water problem is discussed. By treating the incompressible condition as the constraint, a constrained Hamilton variational principle is presented for the shallow water problem. Based on the ... In this paper, the shallow water problem is discussed. By treating the incompressible condition as the constraint, a constrained Hamilton variational principle is presented for the shallow water problem. Based on the constrained Hamilton variational principle, a shallow water equation based on displacement and pressure (SWE-DP) is developed. A hybrid numerical method combining the finite element method for spa- tial discretization and the Zu-class method for time integration is created for the SWE- DP. The correctness of the proposed SWE-DP is verified by numerical comparisons with two existing shallow water equations (SWEs). The effectiveness of the hybrid numerical method proposed for the SWE-DP is also verified by numerical experiments. Moreover, the numerical experiments demonstrate that the Zu-class method shows excellent perfor- mance with respect to simulating the long time evolution of the shallow water. 展开更多
关键词 shallow water equation (SWE) constrained Hamilton variational principle Zu-class method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部