This paper proposes a multi-material topology optimization method based on the hybrid reliability of the probability-ellipsoid model with stress constraint for the stochastic uncertainty and epistemic uncertainty of m...This paper proposes a multi-material topology optimization method based on the hybrid reliability of the probability-ellipsoid model with stress constraint for the stochastic uncertainty and epistemic uncertainty of mechanical loads in optimization design.The probabilistic model is combined with the ellipsoidal model to describe the uncertainty of mechanical loads.The topology optimization formula is combined with the ordered solid isotropic material with penalization(ordered-SIMP)multi-material interpolation model.The stresses of all elements are integrated into a global stress measurement that approximates the maximum stress using the normalized p-norm function.Furthermore,the sequential optimization and reliability assessment(SORA)is applied to transform the original uncertainty optimization problem into an equivalent deterministic topology optimization(DTO)problem.Stochastic response surface and sparse grid technique are combined with SORA to get accurate information on the most probable failure point(MPP).In each cycle,the equivalent topology optimization formula is updated according to the MPP information obtained in the previous cycle.The adjoint variable method is used for deriving the sensitivity of the stress constraint and the moving asymptote method(MMA)is used to update design variables.Finally,the validity and feasibility of the method are verified by the numerical example of L-shape beam design,T-shape structure design,steering knuckle,and 3D T-shaped beam.展开更多
The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determinati...The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determination based on the HTPF method requires at least six tests or a minimum of 14-15 tests(under different conditions)for reliable results.In this study,we modified the HTPF method by considering the shear stress on each pre-existing fracture,which increased the number of equations for the stress tensor determination and decreased the number of tests required.Different shear stresses were attributed to different fractures by random sampling;therefore,the stress tensors were obtained by searching for the optimal solution using the least squares criterion based on the Monte Carlo method.Thereafter,we constrained the stress tensor based on the tensile strength criterion,compressive strength criterion,and vertical stress constraints.The inverted stress tensors were presented and analyzed based on the tensorial nature of the stress using the Euclidean mean stress tensor.Two stress-measurement campaigns in Weifang(Shandong Province,China)and Mercantour road tunnel(France)were implemented to highlight the validity and efficiency of the modified HTPF(M-HTPF)method.The results showed that the M-HTPF method can be applied for stress tensor inversion using only three to four tests on pre-existing fractures,neglecting the stress gradient.The inversion results were confined to relatively small distribution dispersions and were significantly reliable and stable due to the shear stresses on the fractures and the stress constraints employed.The M-HTPF method is highly feasible and efficient for complete stress tensor determination in a single borehole.展开更多
A mathematical model was developed for layout optimization of truss structures with discrete variables subjected to dynamic stress, dynamic displacement and dynamic stability constraints. By using the quasi-static met...A mathematical model was developed for layout optimization of truss structures with discrete variables subjected to dynamic stress, dynamic displacement and dynamic stability constraints. By using the quasi-static method, the mathematical model of structure optimization under dynamic stress, dynamic displacement and dynamic stability constraints were transformed into one subjected to static stress, displacement and stability constraints. The optimization procedures include two levels, i.e., the topology optimization and the shape optimization. In each level, the comprehensive algorithm was used and the relative difference quotients of two kinds of variables were used to search the optimum solution. A comparison between the optimum results of model with stability constraints and the optimum results of model without stability constraint was given. And that shows the stability constraints have a great effect on the optimum solutions.展开更多
A method for topological optimization of structures with discrete variables subjected to dynamic stress and displacement constraints is presented. By using the quasistatic method, the structure optimization problem un...A method for topological optimization of structures with discrete variables subjected to dynamic stress and displacement constraints is presented. By using the quasistatic method, the structure optimization problem under dynamic stress and displacement constraints is converted into one subjected to static stress and displacement constraints. The comprehensive algorithm for topological optimization of structures with discrete variables is used to find the optimum solution.展开更多
A new exist-null combined model is proposed for the structural topology optimization. The model is applied to the topology optimization of the truss with stress constraints. Satisfactory computational result can be ob...A new exist-null combined model is proposed for the structural topology optimization. The model is applied to the topology optimization of the truss with stress constraints. Satisfactory computational result can be obtained with more rapid and more stable convergence as compared with the cross-sectional optimization. This work also shows that the presence of independent and continuous topological variable motivates the research of structural topology optimization.展开更多
Objective: To investigate the dys-psychological stress effect on the growth of subcutaneous xenotransplanted tumor in nude mice bearing human epithelium ovarian carcinoma, and the influence on P53 and NFκBp65 expres...Objective: To investigate the dys-psychological stress effect on the growth of subcutaneous xenotransplanted tumor in nude mice bearing human epithelium ovarian carcinoma, and the influence on P53 and NFκBp65 expressions. Methods: The subcutaneous tumor xenografts were established by implanting human epithelium ovarian carcinoma tissues into nude mice and the dys-psychological stress model was established with restraint. The mice were randomized into the following four treatment groups with each group six mice respectively: tumor group (group A), normal saline intraperitoneal injection; tumor with stress group (group B), normal saline intraperitoneal injection; tumor therapy group (group C), cisplatin intraperitoneal injection; and tumor therapy with stress group (group D), cisplatin intraperitoneal injection. The expressions of P53 and NFκBp65 in tumor tissues were determined by Western blotting. Results: The expressions of P53 and NFκBp65 in each restraint group were enhanced compared with the control groups (P0.05). Conclusion: The dys-psychological stress may induce the high expressions of P53 and NFκBp65 proteins and further promote tumor growth.展开更多
Because of descriptive nonlinearity and computational inefficiency,topology optimization with fatigue life under aperiodic loads has developed slowly.A fatigue constraint topology optimization method based on bidirect...Because of descriptive nonlinearity and computational inefficiency,topology optimization with fatigue life under aperiodic loads has developed slowly.A fatigue constraint topology optimization method based on bidirectional evolutionary structural optimization(BESO)under an aperiodic load is proposed in this paper.In viewof the severe nonlinearity of fatigue damagewith respect to design variables,effective stress cycles are extracted through transient dynamic analysis.Based on the Miner cumulative damage theory and life requirements,a fatigue constraint is first quantified and then transformed into a stress problem.Then,a normalized termination criterion is proposed by approximatemaximum stress measured by global stress using a P-normaggregation function.Finally,optimization examples show that the proposed algorithm can not only meet the requirements of fatigue life but also obtain a reasonable configuration.展开更多
Key components of large structures in aeronautics industry are required to be made light and have long enough fatigue lives.It is of vital importance to estimate the fatigue life of these structures accurately.Since t...Key components of large structures in aeronautics industry are required to be made light and have long enough fatigue lives.It is of vital importance to estimate the fatigue life of these structures accurately.Since the FCG process is affected by various factors,no universal model exists due to the complexity of the mechanisms.Most of the existing models are obtained by fitting the experimental data and could hardly describe the integrative effect of most existing factors simultaneously.In order to account for the integrative effect of specimen parameters,material property and loading conditions on FCG process,a new model named integrative influence factor model(IIF) is proposed based on the plasticity-induced crack closure theory.Accordingly to the predictions of crack opening ratio(γ) and effective stress intensity factor range ratio(U) with different material under various loading conditions,predictions of γ and U by the IIF model are completely identical to the theoretical results from the plane stress state to the plane strain state when Poisson's ratio equals 1/3.When Poisson's ratio equals 0.3,predictions of γ and U by the IIF model are larger than the predictions by the existing model,and more close to the theoretical results.In addition,it describes the influence of R ratios on γ and U effectively in the whole region from-1.0 to 1.0.Moreover,several sets of test data of FCG rates in 5 kinds of aluminum alloys with various specimen thicknesses under different loading conditions are used to validate the IIF model,most of the test data are situated on the predicted curves or between the two curves that represent the specimen with different thicknesses under the same stress ratio.Some of the test data slightly departure from the predictions by the IIF model due to the surface roughness and errors in measurement.Besides,based on the analysis of the physical rule of crack opening ratios,a relative thickness of specimen is defined to describe the influence of material property,specimen thickness and so forth on FCG characteristics conveniently.In conclusion,the relative thickness of specimen simplifies the expression of FCG characteristic and provides a general parameter to analyze the fatigue characteristics of different materials with various thicknesses under different loading conditions.The IIF model describes the integrative effect of existing influence factors explicitly and quantitatively,and provides a helpful tool for fatigue property estimation of practical component and experiment design.展开更多
Plane strain elastic-plastic finite element analyses are used tostudy the stress, strain fields around a straight crack in powerhardening plastic material. Center crack panel (CCP), single edgecrack panel (SECP) and d...Plane strain elastic-plastic finite element analyses are used tostudy the stress, strain fields around a straight crack in powerhardening plastic material. Center crack panel (CCP), single edgecrack panel (SECP) and double edge crack panel (DECP) tensionspecimens are analyzed with various crack lengths. Two localconstraint parameters, i.e. in-plane stress ratio T_x andout-of-plane constraint T_z are an- alyzed, which are defined astangential stress dividing normal (open) stress and out-of-planestress dividing the sum of tangential stress and normal stressrespectively.展开更多
Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make u...Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make use of the materials' resources,those must be known very well;but conventional test methods will offer only limited informational value.The range of questions raised is as wide as the application of engineering materials,and partially they are very specific.The development of huge computer powers enables numeric modelling to simulate structural behaviour in rather complex loading environments-so the real material behaviour is known under the given loading conditions.Here the art of material testing design starts.To study the material behaviour under very distinct and specific loading conditions makes it necessary to simulate different temperature ranges,loading speeds, environments etc.and mostly there doesn't exist any commonly agreed test standard.In this contribution two popular,non-standard test procedures and test systems will be discussed on the base of their application background,special design features as well as test results and typically gained information:The demand for highspeed tests up to 1000 s^(-1) of strain rate is very specific and originates primarily in the automotive industry and the answers enable CAE analysis of crashworthiness of vehicle structures under crash conditions.The information on the material behaviour under multiaxial loading conditions is a more general one.Multiaxial stress states can be reduced to an equivalent stress,which allows the evaluation of the material's constraint and criticality of stress state.Both discussed examples shall show that the open dialogue between the user and the producer of testing machines allows custom-tailored test solutions.展开更多
Through detailed three-dimensional (3D) finite element (FE) calculations, the out-of-plane constraints Tz along embedded center-elliptical cracks in mode I elastic plates are studied. The distributions of Tz are o...Through detailed three-dimensional (3D) finite element (FE) calculations, the out-of-plane constraints Tz along embedded center-elliptical cracks in mode I elastic plates are studied. The distributions of Tz are obtained near the crack front with aspect ratios (a/c) of 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0. Tz decreases from an approximate value of Poisson ratio v at the crack tip to zero with increasing normalized radial distances (r/a) in the normal plane of the crack front line, and increases gradually when the elliptical parameter angle φ changes from 0° to 90°at the same r/a. With a/c rising to 1.0, Tz is getting nearly independent of φ and is only related to r/a. Based on the present FE calculations for Tz, empirical formulas for Tz are obtained to describe the 3D distribution of Tz for embedded center-elliptical cracks using the least squares method in the range of 0.2 ≤ a/c ≤ 1.0. These Tz results together with the corresponding stress intensity factor K are well suitable for the analysis of the 3D embedded centerelliptical crack from field, and a two-parameter K-Tz principle is proposed.展开更多
The theoretical solutions are obtained for the three-dimensional(3-D)stress field in an infinite isotropic elastic plate with a through-the-thickness circular hole subjected to shear load at far field by using Kane an...The theoretical solutions are obtained for the three-dimensional(3-D)stress field in an infinite isotropic elastic plate with a through-the-thickness circular hole subjected to shear load at far field by using Kane and Mindlin′s assumption based on the stress function method.Based on the present solutions,the characteristics of 3-D stress field are analyzed and the emphasis is placed on the effects of the plate thickness and Poisson′s ratio on the deviation of the present 3-D in-plane stress from the related plane stress solutions,the stress concentration and the out-of-plane constraint.The present solutions show that the stress concentration factor reaches its peak value of about 8.9% which is higher than that of the plane stress solutions.As expected,the out-of-plane stress constraint factor can reach 1on the surface of the hole when the plate is a very thick one.展开更多
Topology optimization (TO) has developed rapidly recently. However, topology optimization with stress constraints still faces many challenges due to its highly non-linear properties which will cause inefficient comput...Topology optimization (TO) has developed rapidly recently. However, topology optimization with stress constraints still faces many challenges due to its highly non-linear properties which will cause inefficient computation, iterative oscillation, and convergence guarantee problems. At the same time, isogeometric analysis (IGA) is accepted by more and more researchers, and it has become one important tool in the field of topology optimization because of its high fidelity. In this paper, we focus on topology optimization with stress constraints based on isogeometric analysis to improve computation efficiency and stability. A new hybrid solver combining the alternating direction method of multipliers and the method of moving asymptotes (ADMM-MMA) is proposed to solve this problem. We first generate an initial feasible point by alternating direction method of multipliers (ADMM) in virtue of the rapid initial descent property. After that, we adopt the method of moving asymptotes (MMA) to get the final results. Several benchmark examples are used to verify the proposed method, and the results show its feasibility and effectiveness.展开更多
基金supported by the National Natural Science Foundation of China(Grant 52175236).
文摘This paper proposes a multi-material topology optimization method based on the hybrid reliability of the probability-ellipsoid model with stress constraint for the stochastic uncertainty and epistemic uncertainty of mechanical loads in optimization design.The probabilistic model is combined with the ellipsoidal model to describe the uncertainty of mechanical loads.The topology optimization formula is combined with the ordered solid isotropic material with penalization(ordered-SIMP)multi-material interpolation model.The stresses of all elements are integrated into a global stress measurement that approximates the maximum stress using the normalized p-norm function.Furthermore,the sequential optimization and reliability assessment(SORA)is applied to transform the original uncertainty optimization problem into an equivalent deterministic topology optimization(DTO)problem.Stochastic response surface and sparse grid technique are combined with SORA to get accurate information on the most probable failure point(MPP).In each cycle,the equivalent topology optimization formula is updated according to the MPP information obtained in the previous cycle.The adjoint variable method is used for deriving the sensitivity of the stress constraint and the moving asymptote method(MMA)is used to update design variables.Finally,the validity and feasibility of the method are verified by the numerical example of L-shape beam design,T-shape structure design,steering knuckle,and 3D T-shaped beam.
基金supported by the National Natural Science Foundation of China(Grant No.42174118)a research grant(Grant No.ZDJ 2020-7)from the National Institute of Natural Hazards,Ministry of Emergency Management of China.
文摘The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determination based on the HTPF method requires at least six tests or a minimum of 14-15 tests(under different conditions)for reliable results.In this study,we modified the HTPF method by considering the shear stress on each pre-existing fracture,which increased the number of equations for the stress tensor determination and decreased the number of tests required.Different shear stresses were attributed to different fractures by random sampling;therefore,the stress tensors were obtained by searching for the optimal solution using the least squares criterion based on the Monte Carlo method.Thereafter,we constrained the stress tensor based on the tensile strength criterion,compressive strength criterion,and vertical stress constraints.The inverted stress tensors were presented and analyzed based on the tensorial nature of the stress using the Euclidean mean stress tensor.Two stress-measurement campaigns in Weifang(Shandong Province,China)and Mercantour road tunnel(France)were implemented to highlight the validity and efficiency of the modified HTPF(M-HTPF)method.The results showed that the M-HTPF method can be applied for stress tensor inversion using only three to four tests on pre-existing fractures,neglecting the stress gradient.The inversion results were confined to relatively small distribution dispersions and were significantly reliable and stable due to the shear stresses on the fractures and the stress constraints employed.The M-HTPF method is highly feasible and efficient for complete stress tensor determination in a single borehole.
基金Project supported by the National Natural Science Foundation of China (Nos. 10002005 and 10421002)the Natural Science Foundation of Tianjin (No.02360081)the Education Committee Foundation of Tianjin (No.20022104)the Program for Changjiang Scholars and Innovative Research Team in University of China and the 211 Foundation of Dalian University of Technology
文摘A mathematical model was developed for layout optimization of truss structures with discrete variables subjected to dynamic stress, dynamic displacement and dynamic stability constraints. By using the quasi-static method, the mathematical model of structure optimization under dynamic stress, dynamic displacement and dynamic stability constraints were transformed into one subjected to static stress, displacement and stability constraints. The optimization procedures include two levels, i.e., the topology optimization and the shape optimization. In each level, the comprehensive algorithm was used and the relative difference quotients of two kinds of variables were used to search the optimum solution. A comparison between the optimum results of model with stability constraints and the optimum results of model without stability constraint was given. And that shows the stability constraints have a great effect on the optimum solutions.
文摘A method for topological optimization of structures with discrete variables subjected to dynamic stress and displacement constraints is presented. By using the quasistatic method, the structure optimization problem under dynamic stress and displacement constraints is converted into one subjected to static stress and displacement constraints. The comprehensive algorithm for topological optimization of structures with discrete variables is used to find the optimum solution.
基金The project supported by the State Key Laboratory for Structural Analysis of Industrial Equipment,Dalian University of Technology.
文摘A new exist-null combined model is proposed for the structural topology optimization. The model is applied to the topology optimization of the truss with stress constraints. Satisfactory computational result can be obtained with more rapid and more stable convergence as compared with the cross-sectional optimization. This work also shows that the presence of independent and continuous topological variable motivates the research of structural topology optimization.
基金supported by the National Natural Science Foundation of China (No.30860301)
文摘Objective: To investigate the dys-psychological stress effect on the growth of subcutaneous xenotransplanted tumor in nude mice bearing human epithelium ovarian carcinoma, and the influence on P53 and NFκBp65 expressions. Methods: The subcutaneous tumor xenografts were established by implanting human epithelium ovarian carcinoma tissues into nude mice and the dys-psychological stress model was established with restraint. The mice were randomized into the following four treatment groups with each group six mice respectively: tumor group (group A), normal saline intraperitoneal injection; tumor with stress group (group B), normal saline intraperitoneal injection; tumor therapy group (group C), cisplatin intraperitoneal injection; and tumor therapy with stress group (group D), cisplatin intraperitoneal injection. The expressions of P53 and NFκBp65 in tumor tissues were determined by Western blotting. Results: The expressions of P53 and NFκBp65 in each restraint group were enhanced compared with the control groups (P0.05). Conclusion: The dys-psychological stress may induce the high expressions of P53 and NFκBp65 proteins and further promote tumor growth.
基金Chinese National Natural Science Foundation(No.51890881)Science and Technology Project of Hebei Education Department(Nos.ZD2020156,QN2018228).
文摘Because of descriptive nonlinearity and computational inefficiency,topology optimization with fatigue life under aperiodic loads has developed slowly.A fatigue constraint topology optimization method based on bidirectional evolutionary structural optimization(BESO)under an aperiodic load is proposed in this paper.In viewof the severe nonlinearity of fatigue damagewith respect to design variables,effective stress cycles are extracted through transient dynamic analysis.Based on the Miner cumulative damage theory and life requirements,a fatigue constraint is first quantified and then transformed into a stress problem.Then,a normalized termination criterion is proposed by approximatemaximum stress measured by global stress using a P-normaggregation function.Finally,optimization examples show that the proposed algorithm can not only meet the requirements of fatigue life but also obtain a reasonable configuration.
基金supported by Military Pre-study Project of General Armament Department of China (Grant No. YG060101C)
文摘Key components of large structures in aeronautics industry are required to be made light and have long enough fatigue lives.It is of vital importance to estimate the fatigue life of these structures accurately.Since the FCG process is affected by various factors,no universal model exists due to the complexity of the mechanisms.Most of the existing models are obtained by fitting the experimental data and could hardly describe the integrative effect of most existing factors simultaneously.In order to account for the integrative effect of specimen parameters,material property and loading conditions on FCG process,a new model named integrative influence factor model(IIF) is proposed based on the plasticity-induced crack closure theory.Accordingly to the predictions of crack opening ratio(γ) and effective stress intensity factor range ratio(U) with different material under various loading conditions,predictions of γ and U by the IIF model are completely identical to the theoretical results from the plane stress state to the plane strain state when Poisson's ratio equals 1/3.When Poisson's ratio equals 0.3,predictions of γ and U by the IIF model are larger than the predictions by the existing model,and more close to the theoretical results.In addition,it describes the influence of R ratios on γ and U effectively in the whole region from-1.0 to 1.0.Moreover,several sets of test data of FCG rates in 5 kinds of aluminum alloys with various specimen thicknesses under different loading conditions are used to validate the IIF model,most of the test data are situated on the predicted curves or between the two curves that represent the specimen with different thicknesses under the same stress ratio.Some of the test data slightly departure from the predictions by the IIF model due to the surface roughness and errors in measurement.Besides,based on the analysis of the physical rule of crack opening ratios,a relative thickness of specimen is defined to describe the influence of material property,specimen thickness and so forth on FCG characteristics conveniently.In conclusion,the relative thickness of specimen simplifies the expression of FCG characteristic and provides a general parameter to analyze the fatigue characteristics of different materials with various thicknesses under different loading conditions.The IIF model describes the integrative effect of existing influence factors explicitly and quantitatively,and provides a helpful tool for fatigue property estimation of practical component and experiment design.
基金the National Foundation of Distinguished Young Scientists of China(No.59625510)
文摘Plane strain elastic-plastic finite element analyses are used tostudy the stress, strain fields around a straight crack in powerhardening plastic material. Center crack panel (CCP), single edgecrack panel (SECP) and double edge crack panel (DECP) tensionspecimens are analyzed with various crack lengths. Two localconstraint parameters, i.e. in-plane stress ratio T_x andout-of-plane constraint T_z are an- alyzed, which are defined astangential stress dividing normal (open) stress and out-of-planestress dividing the sum of tangential stress and normal stressrespectively.
文摘Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make use of the materials' resources,those must be known very well;but conventional test methods will offer only limited informational value.The range of questions raised is as wide as the application of engineering materials,and partially they are very specific.The development of huge computer powers enables numeric modelling to simulate structural behaviour in rather complex loading environments-so the real material behaviour is known under the given loading conditions.Here the art of material testing design starts.To study the material behaviour under very distinct and specific loading conditions makes it necessary to simulate different temperature ranges,loading speeds, environments etc.and mostly there doesn't exist any commonly agreed test standard.In this contribution two popular,non-standard test procedures and test systems will be discussed on the base of their application background,special design features as well as test results and typically gained information:The demand for highspeed tests up to 1000 s^(-1) of strain rate is very specific and originates primarily in the automotive industry and the answers enable CAE analysis of crashworthiness of vehicle structures under crash conditions.The information on the material behaviour under multiaxial loading conditions is a more general one.Multiaxial stress states can be reduced to an equivalent stress,which allows the evaluation of the material's constraint and criticality of stress state.Both discussed examples shall show that the open dialogue between the user and the producer of testing machines allows custom-tailored test solutions.
基金The project supported by the National Natural Science Foundation of China (50275073)
文摘Through detailed three-dimensional (3D) finite element (FE) calculations, the out-of-plane constraints Tz along embedded center-elliptical cracks in mode I elastic plates are studied. The distributions of Tz are obtained near the crack front with aspect ratios (a/c) of 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0. Tz decreases from an approximate value of Poisson ratio v at the crack tip to zero with increasing normalized radial distances (r/a) in the normal plane of the crack front line, and increases gradually when the elliptical parameter angle φ changes from 0° to 90°at the same r/a. With a/c rising to 1.0, Tz is getting nearly independent of φ and is only related to r/a. Based on the present FE calculations for Tz, empirical formulas for Tz are obtained to describe the 3D distribution of Tz for embedded center-elliptical cracks using the least squares method in the range of 0.2 ≤ a/c ≤ 1.0. These Tz results together with the corresponding stress intensity factor K are well suitable for the analysis of the 3D embedded centerelliptical crack from field, and a two-parameter K-Tz principle is proposed.
基金Supported by the National Natural Science Foundation of China(11372269,10902057)
文摘The theoretical solutions are obtained for the three-dimensional(3-D)stress field in an infinite isotropic elastic plate with a through-the-thickness circular hole subjected to shear load at far field by using Kane and Mindlin′s assumption based on the stress function method.Based on the present solutions,the characteristics of 3-D stress field are analyzed and the emphasis is placed on the effects of the plate thickness and Poisson′s ratio on the deviation of the present 3-D in-plane stress from the related plane stress solutions,the stress concentration and the out-of-plane constraint.The present solutions show that the stress concentration factor reaches its peak value of about 8.9% which is higher than that of the plane stress solutions.As expected,the out-of-plane stress constraint factor can reach 1on the surface of the hole when the plate is a very thick one.
文摘Topology optimization (TO) has developed rapidly recently. However, topology optimization with stress constraints still faces many challenges due to its highly non-linear properties which will cause inefficient computation, iterative oscillation, and convergence guarantee problems. At the same time, isogeometric analysis (IGA) is accepted by more and more researchers, and it has become one important tool in the field of topology optimization because of its high fidelity. In this paper, we focus on topology optimization with stress constraints based on isogeometric analysis to improve computation efficiency and stability. A new hybrid solver combining the alternating direction method of multipliers and the method of moving asymptotes (ADMM-MMA) is proposed to solve this problem. We first generate an initial feasible point by alternating direction method of multipliers (ADMM) in virtue of the rapid initial descent property. After that, we adopt the method of moving asymptotes (MMA) to get the final results. Several benchmark examples are used to verify the proposed method, and the results show its feasibility and effectiveness.