Constructed wetlands(CwW)are well known nature-based systems for water treatment.This study evaluated the efficiency and effectiveness of seven domestic wastewater treatment systems based on horizontal flow CWs in Jar...Constructed wetlands(CwW)are well known nature-based systems for water treatment.This study evaluated the efficiency and effectiveness of seven domestic wastewater treatment systems based on horizontal flow CWs in Jarabacoa,the Dominican Republic.The results showed that the CWs were efficient in reducing the degree of contamination of wastewater to levels below the Dominican wastewater discharge standards for parameters such as the 5-day biochemical oxygen demand(BOD5)and chemical oxygen demand,but not for the removal of phosphorus and fecal coliforms.In addition,a horizontal flow subsurface wetland in the peri-urban area El Dorado was evaluated in terms of the performance of wastewater treatment in tropical climatic conditions.The concentrations of heavy metals,such as zinc,copper,chromium,and iron,were found to decrease in the effluent of the wetland,and the concentrations for nickel and manganese tended to increase.The levels of heavy metals in the effluent were lower than the limit values of the Dominican wastewater discharge standards.The construction cost of these facilities was around 200 USD per population equivalent,similar to the cost in other countries in the same region.This study suggested some solutions to the improved performance of CWs:selection of a microbial flora that guarantees the reduction of nitrates and nitrites to molecular nitrogen,use of endemic plants that bioaccumulate heavy metals,combination of constructed wetlands with filtration on activated carbon,and inclusion of water purification processes that allow to evaluate the reuse of treated water.展开更多
The Faleme River, a West Africa long transboundary stream (625 km) and abundant flow (>1100 million m<sup>3</sup>) is affected by severe erosion because of mining activities that takes place throughout ...The Faleme River, a West Africa long transboundary stream (625 km) and abundant flow (>1100 million m<sup>3</sup>) is affected by severe erosion because of mining activities that takes place throughout the riverbed. To preserve this important watercourse and ensure the sustainability of its services, selecting and implementing appropriates restorations techniques is vital. In this context, the purpose of this paper was to present an overview of the actions and techniques that can be implemented for the restoration/rehabilitation of the Faleme. The methodological approach includes field investigation, water sampling, literature review with cases studies and SWOT analysis of the four methods presented: river dredging, constructed wetlands, floating treatment wetlands and chemical precipitation (coagulation and flocculation). The study confirmed the pollution of the river by suspended solids (TSS > 1100 mg/L) and heavy metals such as iron, zinc, aluminium, and arsenic. For the restoration methods, it was illustrated through description of their mode of operation and through some case studies presented, that all the four methods have proven their effectiveness in treating rivers but have differences in their costs, their sustainability (detrimental to living organisms or causing a second pollution) and social acceptance. They also have weaknesses and issues that must be addressed to ensure success of rehabilitation. For the case of the Faleme river, after analysis, floating treatment wetlands are highly recommended for their low cost, good removal efficiency if the vulnerability of the raft and buoyancy to strong waves and flow is under control.展开更多
We estimate tree heights using polarimetric interferometric synthetic aperture radar(PolInSAR)data constructed by the dual-polarization(dual-pol)SAR data and random volume over the ground(RVoG)model.Considering the Se...We estimate tree heights using polarimetric interferometric synthetic aperture radar(PolInSAR)data constructed by the dual-polarization(dual-pol)SAR data and random volume over the ground(RVoG)model.Considering the Sentinel-1 SAR dual-pol(SVV,vertically transmitted and vertically received and SVH,vertically transmitted and horizontally received)configuration,one notes that S_(HH),the horizontally transmitted and horizontally received scattering element,is unavailable.The S_(HH)data were constructed using the SVH data,and polarimetric SAR(PolSAR)data were obtained.The proposed approach was first verified in simulation with satisfactory results.It was next applied to construct PolInSAR data by a pair of dual-pol Sentinel-1A data at Duke Forest,North Carolina,USA.According to local observations and forest descriptions,the range of estimated tree heights was overall reasonable.Comparing the heights with the ICESat-2 tree heights at 23 sampling locations,relative errors of 5 points were within±30%.Errors of 8 points ranged from 30%to 40%,but errors of the remaining 10 points were>40%.The results should be encouraged as error reduction is possible.For instance,the construction of PolSAR data should not be limited to using SVH,and a combination of SVH and SVV should be explored.Also,an ensemble of tree heights derived from multiple PolInSAR data can be considered since tree heights do not vary much with time frame in months or one season.展开更多
This research explores strategies to enhance the efficiency of secondary treatment in Vertical Flow Constructed Wetlands (CW) in Montenegro. The focus is on selecting appropriate primary treatment methods alongside th...This research explores strategies to enhance the efficiency of secondary treatment in Vertical Flow Constructed Wetlands (CW) in Montenegro. The focus is on selecting appropriate primary treatment methods alongside three distinct substrate types to improve wastewater treatment efficacy. The study examines the combination of two primary treatments with different substrate types in constructed wetlands (CW1, CW2, and CW3). The primary treatments include the existing wastewater treatment plant (WWTP) in Podgorica, involving coarse material removal through screens, inert material separation in aerated sand traps, and sediment and suspended matter removal in primary sedimentation tanks. The Extreme Separator (ExSep) was employed to evaluate its efficacy as a primary treatment method. The research demonstrates that the efficiency of CW can be significantly enhanced by selecting suitable primary treatment methods and substrates in Podgorica’s conditions. The most promising results were achieved by combining ExSep as a primary treatment with secondary treatment in CW-3. The removal efficiencies after CW3 for COD, BOD, and TSS exceeded 89%, 93%, and 91%, respectively. The outcomes underscore the significance of primary treatment in mitigating pollutant loads before discharge into the constructed wetlands, emphasizing potential areas for further optimization in wastewater treatment practices to enhance environmental sustainability and water quality management.展开更多
In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed...In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.展开更多
Constructed wetlands (CWs) can achieve a high-quality wastewater treatment and a quality that meets the prescribed standard, defined by legislation on wastewater discharge. A limitation in the application of construct...Constructed wetlands (CWs) can achieve a high-quality wastewater treatment and a quality that meets the prescribed standard, defined by legislation on wastewater discharge. A limitation in the application of constructed wetlands (CWs) is the large area requirement, which limits their application. The subject matter of this research is to check the possibility of improving the efficiency of wastewater treatment and reducing the required area for constructed wetlands (CWs) by using an adequate substrate under the conditions found in Montenegro. In the described experiment, the constructed wetlands (CW) have a vertical flow system and play the role of a secondary wastewater treatment, receiving water from the existing WWTP in Podgorica after the primary treatment. These vertical flow systems reflect experience with the use of similar systems in Slovenija, Austria and Italy. Measurements to date show that the substrate plays an important role and that wastewater treatment efficacy varies significantly with respect to the type of substrate when used under the conditions available in Montenegro.展开更多
One of the impacts resulting from mining process is the occurrence of AMD(Acid Mine Drainage),which is rainwater or groundwater mixed with rock.AMD contains specific sulfides in coal,leading to highly acidic water wit...One of the impacts resulting from mining process is the occurrence of AMD(Acid Mine Drainage),which is rainwater or groundwater mixed with rock.AMD contains specific sulfides in coal,leading to highly acidic water with elevated concentrations of iron and manganese.Furthermore,phytoremediation offers a method to enhance specific contaminant levels in various environmental mediums,including soil,sediment,dirt or sludge,groundwater,and surface water.This waste treatment approach employs readily applicable,efficient,and effective plant species,such as burhead or Amazon sword,Melati air(Echinodorus palaefolius),Water hyacinth or eceng gondok(Eichhornia crassipes),and globe fimbry or Mendong(Fimbritylis globulosa)which are aquatic plants in South Sumatra with the capacity to absorb heavy metals.Therefore,this study aims to measure the growth response of each aquatic plant(Echinodorus palaefolius,Eichhornia crassipes,and Fimbritylis globulosa)in each treatment.It also analyzes the amount of heavy metal uptake in the form of Fe and Mn by each aquatic plant(Eichhornia crassipes,Echinodorus palaefolius,and Fimbritylis globulosa)used.Additionally,it investigates the ability of these plants to facilitate the phytoremediation of AMD using compost derived from OPEFB(Oil Palm Empty Fruit Bunches)to reduce the presence of Fe and Mn elements.The study employs a bioreactor and encompasses two treatment factors,namely the type of aquatic plants(Echinodorus palaefolius,Eichhornia crassipes,and Fimbritylis globulosa)and the composition comparison between OPEFB compost and limestone.The result shows that the combination of treatments in terms of plant types and media composition yields the highest growth,with a weight of 286.25 g in T2K1 treatment.This involves Eceng gondok and a media composition of compost to limestone in a ratio of 50%to 50%.Moreover,Mendong exhibits the highest absorption of Fe metal,with a value of 0.82 g,followed by Eceng gondok with 0.55 g,while Melati displays the lowest at 0.38 g.Regarding the absorption of Mn,Eceng gondok demonstrates the highest uptake,measuring 0.36 g,followed by Melati and Mendong at 0.11 g and 0.06 g,respectively.展开更多
A membrane-less constructed wetland microbial fuel cell (CW-MFC) is constructed and operated under continuous flow with a hydraulic retention time (HRT) of 2 d. Fed with glucose, the CW-MFC generates a stable curr...A membrane-less constructed wetland microbial fuel cell (CW-MFC) is constructed and operated under continuous flow with a hydraulic retention time (HRT) of 2 d. Fed with glucose, the CW-MFC generates a stable current density of over 2 A/m3 with a resistor of 1 kΩ and has a chemical oxygen demand (COD) removal efficiency of more than 90% after the startup of 2 to 3 d. A series of systems with the electrode spacings of 10, 20, 30 and 40 cm are compared. It is found that the container with the electrode spacing of 20 cm gains the highest voltage of 560 mV, the highest power density of 0. 149 W/m 3, and the highest Coulombic efficiency of 0.313%. It also has the highest COD removal efficiency of 94. 9%. In addition, the dissolved oxygen (DO) concentrations are observed as the lowest level in the middle of all the CW-MFC reactors. The results show that the more COD is removed, the greater power is generated, and the relatively higher Coulombic efficiency will be achieved. The present study indicates that the CW-MFC process can be used as a cost-effective and environmentally friendly wastewater treatment with simultaneous power generation.展开更多
Constructed wetlands as a wastewater eco-treatment technology has devel-oped for decades. Combining wastewater-treatment with water recycle in an efficient way, it plays an important role in water body restoration and...Constructed wetlands as a wastewater eco-treatment technology has devel-oped for decades. Combining wastewater-treatment with water recycle in an efficient way, it plays an important role in water body restoration and ecological construction. Constructed wetlands with unique advantages have attracted intensive attention since it developed, and have been widely used in treatment of domestic sewage, industrial wastewater, and mine wastewater. In this paper, we summarized the clas-sification, composition, combination, operation mode and pol utant removal mecha-nism of constructed wetlands, as wel as the research progress on the application of constructed wetland in wastewater treatment at home and abroad. In addition, in view of the problems of using constructed wetlands to treat wastewater in China, corresponding solutions were put forward, including setting up system construction standards for constructed wetlands, developing the regulatory and enhancing tech-niques of nitrogen and phosphorus removal, and taking advantage of the unique features of constructed wetlands to improve and restore ecological environment.展开更多
[Objective] The control effect of floating plants constructed wetland to nitrogen and phosphorus pollution from rice field drainage was studied.[Method] Firstly,the characteristic of floating plants and the purificati...[Objective] The control effect of floating plants constructed wetland to nitrogen and phosphorus pollution from rice field drainage was studied.[Method] Firstly,the characteristic of floating plants and the purification principle of pollutants were introduced,and then purification effect was analyzed through controlling nitrogen and phosphorus pollution from rice field drainage by floating plants constructed wetland.[Result] By means of floating plants constructed wetland,the average removal rate of total nitrogen(TN) from double-season early and late rice field drainage reached 52.17% and 62.23%,respectively,while that of total phosphorus(TP) was 45.69% and 74.37%,respectively,with better removal effect.Meanwhile,floating plants have ecological and ornamental value to some extent.[Conclusion] Floating plants constructed wetland could not only control nitrogen and phosphorus pollution in field drainage effectively but also keep farmland ecosystem in healthy state.展开更多
The basic chemistry laboratories of three colleges and universities in Guizhou Province were investigated completely,especially the pollution situations of the basic chemistry projects were counted,and the discharge a...The basic chemistry laboratories of three colleges and universities in Guizhou Province were investigated completely,especially the pollution situations of the basic chemistry projects were counted,and the discharge amounts of the poisonous and harmful pollutants in the waste liquid from laboratories were monitored and analyzed.On the basis of the summing-up and analysis of the current research findings,a simple and feasible treatment scheme through flocculating,precipitating and constructed wetlands was designed to control the three kinds of excessive pollutants.展开更多
In this study, the project of constructed wetland for treatment of tailwater from the wastewater treatment plant in Wudang Mountain was taken as an example, and the technological processes, pollution load, wetland bed...In this study, the project of constructed wetland for treatment of tailwater from the wastewater treatment plant in Wudang Mountain was taken as an example, and the technological processes, pollution load, wetland bed structure, bed filler, selection of plants and hydraulic conditions of the subsurface flow constructed wetland were discussed. A subsurface flow constructed wetland, which covered an area of 7 227 m^2 was finally designed. It could treat 7 000 m^3 of tailwater from the wastewater treatment plant a day. In addition, the system could reduce the emission of COD, BODs, TN, TP and NH3-N by 25.55, 25.55, 12.78, 1.28 and 17.89 t respectively a day. The outlet water was proved to reach the Standard A of the first class in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002).展开更多
[Objective]The activities of urease and phosphatase in integrated vertical flow constructed wetland and purification effect of black and malodorous river were studied.[Method]Honeycomb stone and soft filler were used ...[Objective]The activities of urease and phosphatase in integrated vertical flow constructed wetland and purification effect of black and malodorous river were studied.[Method]Honeycomb stone and soft filler were used as matrix,the biological grid integrated vertical flow constructed wetland system was built to strengthen treatment for black and malodorous river,and the activities of urease and phosphatase of two fillers in different functional areas of constructed wetland were tested to study the film formation property of two fillers in different functional areas.[Result]Both urease and phosphatase activities on biofilm of soft filler were significantly higher than on biofilm of honeycomb stone filler;indicating that choosing soft filler was more advantageous to the growth of biofilm;and urease activity had significant correlation with total nitrogen removal rate,while phosphatase activity had no significant correlation with total phosphorus removal rate.[Conclusion]This study provided evidences for utilizing the activities of urease and phosphatase to evaluate the purification effect of black and malodorous river and choose appropriate filler.展开更多
[Objective] The aim was to choose appropriate floating plant in the wetland in the north China.[Method] Pistia stratiotes L.,Eichhornia crassipes,and Hydrocharis dubia(Bl.) Backer were planted in the aquatic biologi...[Objective] The aim was to choose appropriate floating plant in the wetland in the north China.[Method] Pistia stratiotes L.,Eichhornia crassipes,and Hydrocharis dubia(Bl.) Backer were planted in the aquatic biological pool of constructed subsurface flow wetland system in the reservoir.Through filed investigation,the growth of the three kinds of plants was studied and their adaptability to the northern climate was concluded.[Result] Judging from the growth speed and state of the three kinds of floating plants,the biological characteristic of Pistia stratiotes L.can perfectly adapt the environment in the pool in the reservoir,followed by the Eichhornia crassipes.The growth state of the Hydrocharis dubia(Bl.) Backer was the worst one and it can not adapt to the north environment.[Conclusion] It provided references for the choice of artificial floating plant in the north area.展开更多
The dynamic of growth and nutrient (N and P) absorption of Coix lacryma-jobi Linn.in constructed wetland (CW),as well as the effect of constructed wetland harvest on N,P absorption in eutrophic water were studied....The dynamic of growth and nutrient (N and P) absorption of Coix lacryma-jobi Linn.in constructed wetland (CW),as well as the effect of constructed wetland harvest on N,P absorption in eutrophic water were studied.The results revealed that,in Summer and Autumn,especially in August,C.lacryma-jobi could obtain higher biomass and N,P accumulations,thereby achieving the most efficient purification; from the breeding value point of view,N,P contents could be improved by the appropriate increase of harvest times of C.lacryma-jobi,while too many harvest times was inappropriate to the wastewater purification by C.lacryma-jobi and the nutrients accumulation.So,C.lacryma-jobi should be harvested completely in August during its growth period,and twice-3 times of harvests was appropriate.展开更多
[Objective] The aim was to explore the distributions of main microorganisms in constructed wetland of Iris pseudacorus L.and their function and position in wastewater treatment.[Method]Distributions of main microorgan...[Objective] The aim was to explore the distributions of main microorganisms in constructed wetland of Iris pseudacorus L.and their function and position in wastewater treatment.[Method]Distributions of main microorganisms in the upstream vertical-flow constructed wetland of Iris pseudacorus was studied by training and observing 4 kinds of microorganisms.[Result]The total number of microorganisms on root surface in unit area was 15.32 times as many as that on filler surfacein,among them bacteria and actinomycete were 17.14 times and 19.84 times as many as those on filler surfacein,respectively.[Conclusion]The distributions of microorganisms are significantly different in different parts of wetland system,obviously on root surface.Bacteria are the main populations of biological wastewater treatment.展开更多
[Objection] The aim was to study application of channels constructed wetland in treatment of domestic sewages in new countryside. [Method] Supported by construction of new rural areas project in China, we surveyed on ...[Objection] The aim was to study application of channels constructed wetland in treatment of domestic sewages in new countryside. [Method] Supported by construction of new rural areas project in China, we surveyed on new rural areas in Gannan, Jiangxi Province, summarized source, characteristics and treatment of domestic sewage in countryside, and designed channels constructed wetland for sewage treatment. [Result] The technique is proven effective in sewage treatment. After the technique was conducted for a trial run for four months, removal rates of COD, TP and TN averaged 73.07%, 73.25% and 72.36%, respectively. After contin- uous sampling for six times, effluent COD was analyzed 20-35 mg/L, TP was 0.60- 1.19 mg/L and TN was 6.88-11.21 mg/L, better than that of Standard 1B ruled by Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant. [Conclusion] Thanks for low investment, channels constructed wetland can be built by trans- formation of bottom land, proving a good way for treatment of diffuse pollution source and control of water non-point pollution.展开更多
cDNA libraries were constructed from the leaves of a rice (Oryza sativa L.) salt tolerancevariety Tesan抋i 2 growing in solutions with 150 mmol/L NaCl for 3 h or without salt stress. Three salt-responsive cDNA clones,...cDNA libraries were constructed from the leaves of a rice (Oryza sativa L.) salt tolerancevariety Tesan抋i 2 growing in solutions with 150 mmol/L NaCl for 3 h or without salt stress. Three salt-responsive cDNA clones, Ts1, Ts2 and Ts3 were isolated by differential screening. Northern blottinganalysis showed that the transcription levels of Ts1 and Ts2 increased within 3 h salt stress and kept onincreasing within 24 h, while the transcription level of Ts3 reached its peak within 3 h. Sequence analysisindicated that there were no homologies between the three cDNA clones and any known gene. The threecDNA clones were mapped using a doubled haploid (DH) population derived from an indica variety ZYQ8,which was a salt tolerance parent of Tesan抋i 2, with a japonica variety JX17. Ts1, Ts2 and Ts3 werelocated on chromosomes 1, 3 and 7, respectively. It was noted that Ts1, Ts2, and Ts3 were in or near theregions of major or minor salt tolerance quantitative trait loci (QTLs), which were mapped in the same DHpopulation in a parallel study.展开更多
[Objective] The aim was to al eviate the constructed wetland clogging problems and to explore to the effects of hydraulic loading on wetland clogging. [Method] The experiment, through artificial soil columns, simulate...[Objective] The aim was to al eviate the constructed wetland clogging problems and to explore to the effects of hydraulic loading on wetland clogging. [Method] The experiment, through artificial soil columns, simulated vertical flow arti-ficial wetland, set four hydraulic load level at 50, 100, 150 and 200 cm/d, to identify the impact of hydraulic loading on wetland clogging and to explore the factors run-ning threshold. [Result] The results show that the different levels of hydraulic loading have greater impact; in the constructed wetland clogging process under high hy-draulic loading of 200 cm/d, the effective life was only six months, and the single factor can be speculated that the threshold of the hydraulic load should be at 100-150 cm/d; system can last for six months at low hydraulic loading and last for three months at medium hydraulic load. [Conclusion] The research provides references for wetland clogging experiments in future.展开更多
[ Objective] This study was to research the treatment effect of different media in undercurrent wetland on contamination, so as to pro- vide reference for rehabitating water body of river along small towns. [ Method ]...[ Objective] This study was to research the treatment effect of different media in undercurrent wetland on contamination, so as to pro- vide reference for rehabitating water body of river along small towns. [ Method ] Three different media of gravel, cobblestone and shale were used to rehabilitate water quality of contaminated river. [ Result ] Gravel, cobblestone and shale all performed well in removing TN, TP and CODw,, in contaminated water, of which gravel stuffed undercurrent wetland run best, averagely removing 49.4% TN, 34.7% and 48. 5% COD~, respectively. [ Conclusion] Undercurrent constructed wetland can effectively improve the water quality of contaminated river, and it is cheaper in cost and simpler in operation, thus suitable for generalizing in small towns of China.展开更多
基金support of the Yaque del Norte Water Fund(FAYN),INTEC(Grant No.CBA-330810-2020-P-1)Fondo Dominicano de Ciencia y Tecnologia(FONDOCYT)(Grant No.2022-2B2-161)。
文摘Constructed wetlands(CwW)are well known nature-based systems for water treatment.This study evaluated the efficiency and effectiveness of seven domestic wastewater treatment systems based on horizontal flow CWs in Jarabacoa,the Dominican Republic.The results showed that the CWs were efficient in reducing the degree of contamination of wastewater to levels below the Dominican wastewater discharge standards for parameters such as the 5-day biochemical oxygen demand(BOD5)and chemical oxygen demand,but not for the removal of phosphorus and fecal coliforms.In addition,a horizontal flow subsurface wetland in the peri-urban area El Dorado was evaluated in terms of the performance of wastewater treatment in tropical climatic conditions.The concentrations of heavy metals,such as zinc,copper,chromium,and iron,were found to decrease in the effluent of the wetland,and the concentrations for nickel and manganese tended to increase.The levels of heavy metals in the effluent were lower than the limit values of the Dominican wastewater discharge standards.The construction cost of these facilities was around 200 USD per population equivalent,similar to the cost in other countries in the same region.This study suggested some solutions to the improved performance of CWs:selection of a microbial flora that guarantees the reduction of nitrates and nitrites to molecular nitrogen,use of endemic plants that bioaccumulate heavy metals,combination of constructed wetlands with filtration on activated carbon,and inclusion of water purification processes that allow to evaluate the reuse of treated water.
文摘The Faleme River, a West Africa long transboundary stream (625 km) and abundant flow (>1100 million m<sup>3</sup>) is affected by severe erosion because of mining activities that takes place throughout the riverbed. To preserve this important watercourse and ensure the sustainability of its services, selecting and implementing appropriates restorations techniques is vital. In this context, the purpose of this paper was to present an overview of the actions and techniques that can be implemented for the restoration/rehabilitation of the Faleme. The methodological approach includes field investigation, water sampling, literature review with cases studies and SWOT analysis of the four methods presented: river dredging, constructed wetlands, floating treatment wetlands and chemical precipitation (coagulation and flocculation). The study confirmed the pollution of the river by suspended solids (TSS > 1100 mg/L) and heavy metals such as iron, zinc, aluminium, and arsenic. For the restoration methods, it was illustrated through description of their mode of operation and through some case studies presented, that all the four methods have proven their effectiveness in treating rivers but have differences in their costs, their sustainability (detrimental to living organisms or causing a second pollution) and social acceptance. They also have weaknesses and issues that must be addressed to ensure success of rehabilitation. For the case of the Faleme river, after analysis, floating treatment wetlands are highly recommended for their low cost, good removal efficiency if the vulnerability of the raft and buoyancy to strong waves and flow is under control.
文摘We estimate tree heights using polarimetric interferometric synthetic aperture radar(PolInSAR)data constructed by the dual-polarization(dual-pol)SAR data and random volume over the ground(RVoG)model.Considering the Sentinel-1 SAR dual-pol(SVV,vertically transmitted and vertically received and SVH,vertically transmitted and horizontally received)configuration,one notes that S_(HH),the horizontally transmitted and horizontally received scattering element,is unavailable.The S_(HH)data were constructed using the SVH data,and polarimetric SAR(PolSAR)data were obtained.The proposed approach was first verified in simulation with satisfactory results.It was next applied to construct PolInSAR data by a pair of dual-pol Sentinel-1A data at Duke Forest,North Carolina,USA.According to local observations and forest descriptions,the range of estimated tree heights was overall reasonable.Comparing the heights with the ICESat-2 tree heights at 23 sampling locations,relative errors of 5 points were within±30%.Errors of 8 points ranged from 30%to 40%,but errors of the remaining 10 points were>40%.The results should be encouraged as error reduction is possible.For instance,the construction of PolSAR data should not be limited to using SVH,and a combination of SVH and SVV should be explored.Also,an ensemble of tree heights derived from multiple PolInSAR data can be considered since tree heights do not vary much with time frame in months or one season.
文摘This research explores strategies to enhance the efficiency of secondary treatment in Vertical Flow Constructed Wetlands (CW) in Montenegro. The focus is on selecting appropriate primary treatment methods alongside three distinct substrate types to improve wastewater treatment efficacy. The study examines the combination of two primary treatments with different substrate types in constructed wetlands (CW1, CW2, and CW3). The primary treatments include the existing wastewater treatment plant (WWTP) in Podgorica, involving coarse material removal through screens, inert material separation in aerated sand traps, and sediment and suspended matter removal in primary sedimentation tanks. The Extreme Separator (ExSep) was employed to evaluate its efficacy as a primary treatment method. The research demonstrates that the efficiency of CW can be significantly enhanced by selecting suitable primary treatment methods and substrates in Podgorica’s conditions. The most promising results were achieved by combining ExSep as a primary treatment with secondary treatment in CW-3. The removal efficiencies after CW3 for COD, BOD, and TSS exceeded 89%, 93%, and 91%, respectively. The outcomes underscore the significance of primary treatment in mitigating pollutant loads before discharge into the constructed wetlands, emphasizing potential areas for further optimization in wastewater treatment practices to enhance environmental sustainability and water quality management.
文摘In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.
文摘Constructed wetlands (CWs) can achieve a high-quality wastewater treatment and a quality that meets the prescribed standard, defined by legislation on wastewater discharge. A limitation in the application of constructed wetlands (CWs) is the large area requirement, which limits their application. The subject matter of this research is to check the possibility of improving the efficiency of wastewater treatment and reducing the required area for constructed wetlands (CWs) by using an adequate substrate under the conditions found in Montenegro. In the described experiment, the constructed wetlands (CW) have a vertical flow system and play the role of a secondary wastewater treatment, receiving water from the existing WWTP in Podgorica after the primary treatment. These vertical flow systems reflect experience with the use of similar systems in Slovenija, Austria and Italy. Measurements to date show that the substrate plays an important role and that wastewater treatment efficacy varies significantly with respect to the type of substrate when used under the conditions available in Montenegro.
文摘One of the impacts resulting from mining process is the occurrence of AMD(Acid Mine Drainage),which is rainwater or groundwater mixed with rock.AMD contains specific sulfides in coal,leading to highly acidic water with elevated concentrations of iron and manganese.Furthermore,phytoremediation offers a method to enhance specific contaminant levels in various environmental mediums,including soil,sediment,dirt or sludge,groundwater,and surface water.This waste treatment approach employs readily applicable,efficient,and effective plant species,such as burhead or Amazon sword,Melati air(Echinodorus palaefolius),Water hyacinth or eceng gondok(Eichhornia crassipes),and globe fimbry or Mendong(Fimbritylis globulosa)which are aquatic plants in South Sumatra with the capacity to absorb heavy metals.Therefore,this study aims to measure the growth response of each aquatic plant(Echinodorus palaefolius,Eichhornia crassipes,and Fimbritylis globulosa)in each treatment.It also analyzes the amount of heavy metal uptake in the form of Fe and Mn by each aquatic plant(Eichhornia crassipes,Echinodorus palaefolius,and Fimbritylis globulosa)used.Additionally,it investigates the ability of these plants to facilitate the phytoremediation of AMD using compost derived from OPEFB(Oil Palm Empty Fruit Bunches)to reduce the presence of Fe and Mn elements.The study employs a bioreactor and encompasses two treatment factors,namely the type of aquatic plants(Echinodorus palaefolius,Eichhornia crassipes,and Fimbritylis globulosa)and the composition comparison between OPEFB compost and limestone.The result shows that the combination of treatments in terms of plant types and media composition yields the highest growth,with a weight of 286.25 g in T2K1 treatment.This involves Eceng gondok and a media composition of compost to limestone in a ratio of 50%to 50%.Moreover,Mendong exhibits the highest absorption of Fe metal,with a value of 0.82 g,followed by Eceng gondok with 0.55 g,while Melati displays the lowest at 0.38 g.Regarding the absorption of Mn,Eceng gondok demonstrates the highest uptake,measuring 0.36 g,followed by Melati and Mendong at 0.11 g and 0.06 g,respectively.
基金The Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China (No.51109038)
文摘A membrane-less constructed wetland microbial fuel cell (CW-MFC) is constructed and operated under continuous flow with a hydraulic retention time (HRT) of 2 d. Fed with glucose, the CW-MFC generates a stable current density of over 2 A/m3 with a resistor of 1 kΩ and has a chemical oxygen demand (COD) removal efficiency of more than 90% after the startup of 2 to 3 d. A series of systems with the electrode spacings of 10, 20, 30 and 40 cm are compared. It is found that the container with the electrode spacing of 20 cm gains the highest voltage of 560 mV, the highest power density of 0. 149 W/m 3, and the highest Coulombic efficiency of 0.313%. It also has the highest COD removal efficiency of 94. 9%. In addition, the dissolved oxygen (DO) concentrations are observed as the lowest level in the middle of all the CW-MFC reactors. The results show that the more COD is removed, the greater power is generated, and the relatively higher Coulombic efficiency will be achieved. The present study indicates that the CW-MFC process can be used as a cost-effective and environmentally friendly wastewater treatment with simultaneous power generation.
基金Supported by the National Key Technology R&D Program(2012BAD40B02)~~
文摘Constructed wetlands as a wastewater eco-treatment technology has devel-oped for decades. Combining wastewater-treatment with water recycle in an efficient way, it plays an important role in water body restoration and ecological construction. Constructed wetlands with unique advantages have attracted intensive attention since it developed, and have been widely used in treatment of domestic sewage, industrial wastewater, and mine wastewater. In this paper, we summarized the clas-sification, composition, combination, operation mode and pol utant removal mecha-nism of constructed wetlands, as wel as the research progress on the application of constructed wetland in wastewater treatment at home and abroad. In addition, in view of the problems of using constructed wetlands to treat wastewater in China, corresponding solutions were put forward, including setting up system construction standards for constructed wetlands, developing the regulatory and enhancing tech-niques of nitrogen and phosphorus removal, and taking advantage of the unique features of constructed wetlands to improve and restore ecological environment.
基金Supported by Natural Science Foundation of Guangxi Province(0991026)Foundation of Guangxi Key Laboratory of Environmental Engineering and Protection Assessment(0701K019)+1 种基金Project of Environmental Engineering Innovation Team of Talent Small Upland Construction in Universities in Guangxi([2007]Number71)InnovationProgram Project of Postgraduate Education in Guangxi Province(2009105960815M25)~~
文摘[Objective] The control effect of floating plants constructed wetland to nitrogen and phosphorus pollution from rice field drainage was studied.[Method] Firstly,the characteristic of floating plants and the purification principle of pollutants were introduced,and then purification effect was analyzed through controlling nitrogen and phosphorus pollution from rice field drainage by floating plants constructed wetland.[Result] By means of floating plants constructed wetland,the average removal rate of total nitrogen(TN) from double-season early and late rice field drainage reached 52.17% and 62.23%,respectively,while that of total phosphorus(TP) was 45.69% and 74.37%,respectively,with better removal effect.Meanwhile,floating plants have ecological and ornamental value to some extent.[Conclusion] Floating plants constructed wetland could not only control nitrogen and phosphorus pollution in field drainage effectively but also keep farmland ecosystem in healthy state.
基金Supported by Natural Science Foundation Projects of Education Department of Guizhou Province (2006319)
文摘The basic chemistry laboratories of three colleges and universities in Guizhou Province were investigated completely,especially the pollution situations of the basic chemistry projects were counted,and the discharge amounts of the poisonous and harmful pollutants in the waste liquid from laboratories were monitored and analyzed.On the basis of the summing-up and analysis of the current research findings,a simple and feasible treatment scheme through flocculating,precipitating and constructed wetlands was designed to control the three kinds of excessive pollutants.
文摘In this study, the project of constructed wetland for treatment of tailwater from the wastewater treatment plant in Wudang Mountain was taken as an example, and the technological processes, pollution load, wetland bed structure, bed filler, selection of plants and hydraulic conditions of the subsurface flow constructed wetland were discussed. A subsurface flow constructed wetland, which covered an area of 7 227 m^2 was finally designed. It could treat 7 000 m^3 of tailwater from the wastewater treatment plant a day. In addition, the system could reduce the emission of COD, BODs, TN, TP and NH3-N by 25.55, 25.55, 12.78, 1.28 and 17.89 t respectively a day. The outlet water was proved to reach the Standard A of the first class in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002).
基金Supported by National Major Science and Technology Projects(2009ZX07317-006)National Major Science and Technology Projects(2009ZX07317-009)~~
文摘[Objective]The activities of urease and phosphatase in integrated vertical flow constructed wetland and purification effect of black and malodorous river were studied.[Method]Honeycomb stone and soft filler were used as matrix,the biological grid integrated vertical flow constructed wetland system was built to strengthen treatment for black and malodorous river,and the activities of urease and phosphatase of two fillers in different functional areas of constructed wetland were tested to study the film formation property of two fillers in different functional areas.[Result]Both urease and phosphatase activities on biofilm of soft filler were significantly higher than on biofilm of honeycomb stone filler;indicating that choosing soft filler was more advantageous to the growth of biofilm;and urease activity had significant correlation with total nitrogen removal rate,while phosphatase activity had no significant correlation with total phosphorus removal rate.[Conclusion]This study provided evidences for utilizing the activities of urease and phosphatase to evaluate the purification effect of black and malodorous river and choose appropriate filler.
基金Supported by National Water Special Project"River Water Environment Comprehensive Management Technology Study and Comprehensive demonstration"(2008ZX07209-002-002)China Institute of Water Resources and Hydropower Research Open Fund(IWHRKF201013)~~
文摘[Objective] The aim was to choose appropriate floating plant in the wetland in the north China.[Method] Pistia stratiotes L.,Eichhornia crassipes,and Hydrocharis dubia(Bl.) Backer were planted in the aquatic biological pool of constructed subsurface flow wetland system in the reservoir.Through filed investigation,the growth of the three kinds of plants was studied and their adaptability to the northern climate was concluded.[Result] Judging from the growth speed and state of the three kinds of floating plants,the biological characteristic of Pistia stratiotes L.can perfectly adapt the environment in the pool in the reservoir,followed by the Eichhornia crassipes.The growth state of the Hydrocharis dubia(Bl.) Backer was the worst one and it can not adapt to the north environment.[Conclusion] It provided references for the choice of artificial floating plant in the north area.
基金Supported by Project Sponsored by National Natural Science Foundation (30370146)Projects Sponsored by European Union (ERBIC18CT960059)~~
文摘The dynamic of growth and nutrient (N and P) absorption of Coix lacryma-jobi Linn.in constructed wetland (CW),as well as the effect of constructed wetland harvest on N,P absorption in eutrophic water were studied.The results revealed that,in Summer and Autumn,especially in August,C.lacryma-jobi could obtain higher biomass and N,P accumulations,thereby achieving the most efficient purification; from the breeding value point of view,N,P contents could be improved by the appropriate increase of harvest times of C.lacryma-jobi,while too many harvest times was inappropriate to the wastewater purification by C.lacryma-jobi and the nutrients accumulation.So,C.lacryma-jobi should be harvested completely in August during its growth period,and twice-3 times of harvests was appropriate.
基金Supported by Research Fund of Jiangsu Construction Office(JS2008JH05)Key Project of Scitechnology Demonstration by Jiangsu Environmental Protection Department(2009023)+1 种基金Natural Science Foundation in Jiangsu(BK2008380)Key Academic Fundfor Young Teachers in Nanjing University of Technology~~
文摘[Objective] The aim was to explore the distributions of main microorganisms in constructed wetland of Iris pseudacorus L.and their function and position in wastewater treatment.[Method]Distributions of main microorganisms in the upstream vertical-flow constructed wetland of Iris pseudacorus was studied by training and observing 4 kinds of microorganisms.[Result]The total number of microorganisms on root surface in unit area was 15.32 times as many as that on filler surfacein,among them bacteria and actinomycete were 17.14 times and 19.84 times as many as those on filler surfacein,respectively.[Conclusion]The distributions of microorganisms are significantly different in different parts of wetland system,obviously on root surface.Bacteria are the main populations of biological wastewater treatment.
基金Supported by Project of the National Eleventh-Five Year Research Program of China(2008BAD96B04)~~
文摘[Objection] The aim was to study application of channels constructed wetland in treatment of domestic sewages in new countryside. [Method] Supported by construction of new rural areas project in China, we surveyed on new rural areas in Gannan, Jiangxi Province, summarized source, characteristics and treatment of domestic sewage in countryside, and designed channels constructed wetland for sewage treatment. [Result] The technique is proven effective in sewage treatment. After the technique was conducted for a trial run for four months, removal rates of COD, TP and TN averaged 73.07%, 73.25% and 72.36%, respectively. After contin- uous sampling for six times, effluent COD was analyzed 20-35 mg/L, TP was 0.60- 1.19 mg/L and TN was 6.88-11.21 mg/L, better than that of Standard 1B ruled by Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant. [Conclusion] Thanks for low investment, channels constructed wetland can be built by trans- formation of bottom land, proving a good way for treatment of diffuse pollution source and control of water non-point pollution.
文摘cDNA libraries were constructed from the leaves of a rice (Oryza sativa L.) salt tolerancevariety Tesan抋i 2 growing in solutions with 150 mmol/L NaCl for 3 h or without salt stress. Three salt-responsive cDNA clones, Ts1, Ts2 and Ts3 were isolated by differential screening. Northern blottinganalysis showed that the transcription levels of Ts1 and Ts2 increased within 3 h salt stress and kept onincreasing within 24 h, while the transcription level of Ts3 reached its peak within 3 h. Sequence analysisindicated that there were no homologies between the three cDNA clones and any known gene. The threecDNA clones were mapped using a doubled haploid (DH) population derived from an indica variety ZYQ8,which was a salt tolerance parent of Tesan抋i 2, with a japonica variety JX17. Ts1, Ts2 and Ts3 werelocated on chromosomes 1, 3 and 7, respectively. It was noted that Ts1, Ts2, and Ts3 were in or near theregions of major or minor salt tolerance quantitative trait loci (QTLs), which were mapped in the same DHpopulation in a parallel study.
基金Supported by National Natural Science Foundation of China(41071214)~~
文摘[Objective] The aim was to al eviate the constructed wetland clogging problems and to explore to the effects of hydraulic loading on wetland clogging. [Method] The experiment, through artificial soil columns, simulated vertical flow arti-ficial wetland, set four hydraulic load level at 50, 100, 150 and 200 cm/d, to identify the impact of hydraulic loading on wetland clogging and to explore the factors run-ning threshold. [Result] The results show that the different levels of hydraulic loading have greater impact; in the constructed wetland clogging process under high hy-draulic loading of 200 cm/d, the effective life was only six months, and the single factor can be speculated that the threshold of the hydraulic load should be at 100-150 cm/d; system can last for six months at low hydraulic loading and last for three months at medium hydraulic load. [Conclusion] The research provides references for wetland clogging experiments in future.
文摘[ Objective] This study was to research the treatment effect of different media in undercurrent wetland on contamination, so as to pro- vide reference for rehabitating water body of river along small towns. [ Method ] Three different media of gravel, cobblestone and shale were used to rehabilitate water quality of contaminated river. [ Result ] Gravel, cobblestone and shale all performed well in removing TN, TP and CODw,, in contaminated water, of which gravel stuffed undercurrent wetland run best, averagely removing 49.4% TN, 34.7% and 48. 5% COD~, respectively. [ Conclusion] Undercurrent constructed wetland can effectively improve the water quality of contaminated river, and it is cheaper in cost and simpler in operation, thus suitable for generalizing in small towns of China.