Construction grammar attempts to reveal the nature, structure, and functions of language. As a theoretical system of language based on cognitive linguistics, construction grammar is a reaction and thus a contrast to t...Construction grammar attempts to reveal the nature, structure, and functions of language. As a theoretical system of language based on cognitive linguistics, construction grammar is a reaction and thus a contrast to the traditional generative grammar. This paper tries to outline the major propositions of construction grammar and construction theory, analyses the significance of constructions and their relations to second language acquisition (SLA) and the routes of construction acquisition in SLA, plus the orientations in research on the relations between construction acquisition and SLA.展开更多
“Form-meaning pair”is not a distinctive feature of constructions,but a universal feature of all things.A construction must be a structure.Morphemes are the smallest sound-meaning assemblies,but they only represent a...“Form-meaning pair”is not a distinctive feature of constructions,but a universal feature of all things.A construction must be a structure.Morphemes are the smallest sound-meaning assemblies,but they only represent a symbolic relationship which has no internal structure;thus,they are not constructions.In addition,if morphemes are also treated as constructions,there is a problem of“heterogeneity”in understanding the“form”of constructions.As to the rising“constructionist”and the traditional“atomist”dichotomy,we feel the“constructionist”approach complies better with the actual linguistic life.Construction Grammar leads people to pay close attention to the integrity of constructions and the cognitive mechanisms behind linguistic facts.Therefore,it is of great value both theoretically and practically.However,since Construction Grammar has not yet displayed a distinct value in terms of methodology,we must be careful not to overrate it or overestimate it.展开更多
English gerund construction is a system composed of 3 variants, including "Gerund + Φ", "Gerund + of + NP", and "Gerund + NP". The noun and verb attributes of the 3 variants are recursiv...English gerund construction is a system composed of 3 variants, including "Gerund + Φ", "Gerund + of + NP", and "Gerund + NP". The noun and verb attributes of the 3 variants are recursive, and in theory their frequencies vary regularly in different styles. An abstract is placed before the beginning of an academic papers, which has the basic characteristics of conciseness and generalization, and has special requirements for the use of gerunds. The purpose of this study was to empirically explore the system of gerund construction in abstracts of natural science and social science papers, and to specifically explore the inherent characteristics of noun and verb properties of the 3 variants. For this purpose, two corpora were constructed, one is about abstracts of natural science papers, and the other is about abstracts of social science papers. Finally, the results of chi-square test showed that there was no significant difference in the frequencies of the 3 variants in the abstracts of natural science and social science papers, and the two corpora can be studied as a whole. In the combined corpus, there were significant differences in the frequencies of the 3 gerund variants. The frequencies of these 3 variants and their gerund properties showed a recursive change.展开更多
Creativity is a design feature of human language.This paper presents a cognitive model of verbal creativity that draws on insights from the psychological research into creativity-particularly Glaveanu's 5A model t...Creativity is a design feature of human language.This paper presents a cognitive model of verbal creativity that draws on insights from the psychological research into creativity-particularly Glaveanu's 5A model that distinguishes five crucial perspectives on a creative act(actors,audience,artefacts,actions and affordances).The paper will outline a linguistic version of this model that adopts Construction Grammar as its theoretical foundation.The resulting"5C model of constructional creativity"argues that the central elements of linguistic creativity are constructors,co-constructors,constructs,constructional blending and the constructional network.展开更多
This study aims at analyzing the tendency and change in the research on construction grammar from 2010 to 2020.Descriptively,this study includes the publication year,research topic,research direction,research content,...This study aims at analyzing the tendency and change in the research on construction grammar from 2010 to 2020.Descriptively,this study includes the publication year,research topic,research direction,research content,and the research methods.Twenty-four CSSCI journals were selected as the research samples using the keyword–“Construction Grammar.”The research topics mainly include Chinese construction research,foreign language construction research,and comparative studies on Chinese and other language constructions.The results showed that there are many Chinese construction research,but the other two research topics still require improvement.Ontology research was the main focus;acquisition research and teaching research are worthy for further exploration.Case studies and theoretical studies were the most concerned contents,whereas studies on language acquisition,pedagogy,and corpus construction were feeble.Qualitative description and theoretical review were the most popular methods,while empirical,quantitative,and diachronic analyses were less frequently used.After analyzing the trends,it has been predicted that the research on construction grammar would continue to heat up in the future,and there would be more research directions and contents along with diversified research methods.展开更多
Automatic control technology is the basis of road robot improvement,according to the characteristics of construction equipment and functions,the research will be input type perception from positioning acquisition,real...Automatic control technology is the basis of road robot improvement,according to the characteristics of construction equipment and functions,the research will be input type perception from positioning acquisition,real-world monitoring,the process will use RTK-GNSS positional perception technology,by projecting the left side of the earth from Gauss-Krueger projection method,and then carry out the Cartesian conversion based on the characteristics of drawing;steering control system is the core of the electric drive unmanned module,on the basis of the analysis of the composition of the steering system of unmanned engineering vehicles,the steering system key components such as direction,torque sensor,drive motor and other models are established,the joint simulation model of unmanned engineering vehicles is established,the steering controller is designed using the PID method,the simulation results show that the control method can meet the construction path demand for automatic steering.The path planning will first formulate the construction area with preset values and realize the steering angle correction during driving by PID algorithm,and never realize the construction-based path planning,and the results show that the method can control the straight path within the error of 10 cm and the curve error within 20 cm.With the collaboration of various modules,the automatic construction simulation results of this robot show that the design path and control method is effective.展开更多
The continuous progress of urbanization has driven the continuous development and innovation of landscape planning and design.Focused on the important design method of modern construction art,this study analyzed its c...The continuous progress of urbanization has driven the continuous development and innovation of landscape planning and design.Focused on the important design method of modern construction art,this study analyzed its concepts and characteristics,and made deep exploration to its application in landscape planning and design.The results indicated that modern construction art had a significant impact on landscape spatial planning and layout,spatial design forms,and spatial ornaments.The use of modern construction art concepts could make landscape design more scientific,artistic,and humane,creating higher quality leisure and entertainment venues for audiences.展开更多
构式语法研究的新趋势很多,涉及构式的建构过程、构式从词素到分句到更大单位的拓展路径、构式视角下的语言习得与认知,以及构式的历史比较研究等。这些关于构式研究的新问题在牛津大学出版社出版的The Oxford Handbook of Construction...构式语法研究的新趋势很多,涉及构式的建构过程、构式从词素到分句到更大单位的拓展路径、构式视角下的语言习得与认知,以及构式的历史比较研究等。这些关于构式研究的新问题在牛津大学出版社出版的The Oxford Handbook of Construction Grammar一书中得到了充分关注。本文将从内容结构、理论特色、研究局限三个方面详细阐述构式语法研究的新发展。展开更多
Bio-cement and bio-concrete are innovative solutions for sustainable construction, aiming to reduce environmental impact while maintaining the durability and versatility of building materials. Bio-cement is an eco-fri...Bio-cement and bio-concrete are innovative solutions for sustainable construction, aiming to reduce environmental impact while maintaining the durability and versatility of building materials. Bio-cement is an eco-friendly alternative to traditional cement, produced through Microbially Induced Calcium Carbonate Precipitation (MICP), which mimics natural biomineralization processes. This method reduces CO2 emissions and enhances the strength and durability of construction materials. Bio-concrete incorporates bio-cement into concrete, creating a self-healing material. When cracks form in bio-concrete, dormant bacteria within the material become active in the presence of water, producing limestone to fill the cracks, extending the material’s lifespan and reducing the need for repairs. The environmental impact of traditional cement production is significant, with cement generation accounting for up to 8% of global carbon emissions. Creative solutions are needed to develop more sustainable construction materials, with some efforts using modern innovations to make concrete ultra-durable and others turning to science to create affordable bio-cement. The research demonstrates the potential of bio-cement to revolutionize sustainable building practices by offering a low-energy, low-emission alternative to traditional cement while also addressing environmental concerns. The findings suggest promising applications in various construction scenarios, including earthquake-prone areas, by enhancing material durability and longevity through self-repair mechanisms.展开更多
The development of the construction industry is shifting towards low-carbon construction,so it is necessary to improve and optimize related construction concepts,methods,and processes.By improving resource and energy ...The development of the construction industry is shifting towards low-carbon construction,so it is necessary to improve and optimize related construction concepts,methods,and processes.By improving resource and energy control efficiency in building projects,minimizing construction waste,and reducing environmental impact,a foundation for the sustainable development of the industry can be established.This paper mainly analyzes the significance of low-carbon energy-saving construction technology and the control factors of construction,summarizes the status quo of the development of building energy-saving construction,and puts forward strategies for applying building energy-saving construction technology.These strategies serve to achieve low-carbon and energy-saving goals to promote the healthy development of energy-saving construction.展开更多
Urbanization has led to the rapid development of the construction industry.However,this has also led to higher requirements for the construction engineering management.Other than the quality monitoring of engineering ...Urbanization has led to the rapid development of the construction industry.However,this has also led to higher requirements for the construction engineering management.Other than the quality monitoring of engineering construction,the energy-saving properties of the building should also be considered.Therefore,a scientific management approach should be adopted to improve green building management.This paper primarily examines the importance of quality management in green building construction,along with the factors influencing it.It also identifies the quality issues present in current green building construction.Finally,it proposes measures for quality management in the green building construction process to facilitate the industry’s healthy development.展开更多
With the gradual acceleration of the urbanization process,the construction industry has been developing rapidly.As the key link to ensure the quality and safety of the project,construction management and construction ...With the gradual acceleration of the urbanization process,the construction industry has been developing rapidly.As the key link to ensure the quality and safety of the project,construction management and construction quality control are of great significance to enhance the competitiveness of construction enterprises and realize sustainable development.In this paper,the effective strategy of construction management and the effective strategy of construction quality control will be discussed in depth,aiming at providing useful management and quality control strategies for construction enterprises.展开更多
In recent years,China has made significant progress in the construction of highways,resulting in an improved highway network that has provided robust support for economic and social development.However,the rapid expan...In recent years,China has made significant progress in the construction of highways,resulting in an improved highway network that has provided robust support for economic and social development.However,the rapid expansion of highway construction,power supply,and distribution has led to several challenges in mechanical and electrical engineering technology.Ensuring the safe,stable,and cost-effective operation of the power supply and distribution system to meet the diverse requirements of highway operations has become a pressing issue.This article takes an example of a highway electromechanical engineering power supply and distribution construction project to provide insight into the construction process of highway electromechanical engineering power supply and distribution technology.展开更多
As the urban populations grow,the number and size of subway construction projects are increasing while also meeting higher construction standards.So,subway construction projects must have a better understanding of con...As the urban populations grow,the number and size of subway construction projects are increasing while also meeting higher construction standards.So,subway construction projects must have a better understanding of construction technology.This article focuses on the construction technology of the subway tunnel expansion under the bridge foundation.By analyzing the engineering characteristics of the bridge foundation and using a project as an example,this article provides a detailed discussion of the construction process of tunnel expansion under a bridge foundation.This article aims to serve as a reference for subway tunnel construction in China to ensure the key points of construction technology are understood,thus improving construction quality and laying a solid technical foundation for the sustainable development of urban rail engineering.展开更多
The high-quality development of the construction industry fundamentally stems from the significant improvement of total factor productivity.Therefore,it is of crucial significance for promoting the development of the ...The high-quality development of the construction industry fundamentally stems from the significant improvement of total factor productivity.Therefore,it is of crucial significance for promoting the development of the construction industry to a higher level by scientifically and accurately measuring the total factor productivity of the construction industry and deeply analyzing the influencing factors behind it.Based on a comprehensive consideration of research methods and influencing factors,this paper systematically reviews the existing relevant literature on total factor productivity in the construction industry,aiming to reveal the current research development trend in this field and point out potential problems.This effort aims to provide a solid theoretical foundation and valuable reference for further in-depth research,and jointly promote the continuous progress and development of total factor productivity research in the construction industry.展开更多
The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of it...The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of its good sustainability and acceptable economic cost,triggering the development of various types of extraterrestrial construction materials.A comprehensive survey and comparison of materials from the perspective of performance was conducted to provide suggestions for material selection and optimization.Thirteen types of typical construction materials are discussed in terms of their reliability and applicability in extreme extraterrestrial environment.Mechanical,thermal and optical,and radiation-shielding properties are considered.The influencing factors and optimization methods for these properties are analyzed.From the perspective of material properties,the existing challenges lie in the comprehensive,long-term,and real characterization of regolith-based construction materials.Correspondingly,the suggested future directions include the application of high-throughput characterization methods,accelerated durability tests,and conducting extraterrestrial experiments.展开更多
Identifying workers’construction activities or behaviors can enable managers to better monitor labor efficiency and construction progress.However,current activity analysis methods for construction workers rely solely...Identifying workers’construction activities or behaviors can enable managers to better monitor labor efficiency and construction progress.However,current activity analysis methods for construction workers rely solely on manual observations and recordings,which consumes considerable time and has high labor costs.Researchers have focused on monitoring on-site construction activities of workers.However,when multiple workers are working together,current research cannot accu rately and automatically identify the construction activity.This research proposes a deep learning framework for the automated analysis of the construction activities of multiple workers.In this framework,multiple deep neural network models are designed and used to complete worker key point extraction,worker tracking,and worker construction activity analysis.The designed framework was tested at an actual construction site,and activity recognition for multiple workers was performed,indicating the feasibility of the framework for the automated monitoring of work efficiency.展开更多
Food security is a strategic priority for a country’s economic development.In China,high-standard farmland construction(HSFC)is an important initiative to stabilize grain production and increase grain production capa...Food security is a strategic priority for a country’s economic development.In China,high-standard farmland construction(HSFC)is an important initiative to stabilize grain production and increase grain production capacity.Based on panel data from 31 sample provinces,autonomous regions,and municipalities in China from 2005–2017,this study explored the impact of HSFC on grain yield using the difference-in-differences(DID)method.The results showed that HSFC significantly increased total grain production,which is robust to various checks.HSFC increased grain yield through three potential mechanisms.First,it could increase the grain replanting index.Second,it could effectively reduce yield loss due to droughts and floods.Last,HSFC could strengthen the cultivated land by renovating the low-and medium-yielding fields.Heterogeneity analysis found that the HSFC farmland showed a significant increase in grain yield only in the main grain-producing areas and balanced areas.In addition,HSFC significantly increased the yields of rice,wheat,and maize while leading to a reduction in soybean yields.The findings suggest the government should continue to promote HSFC,improve construction standards,and strictly control the“non-agriculturalization”and“non-coordination”of farmland to increase grain production further.At the same time,market mechanisms should be used to incentivize soybean farming,improve returns and stabilize soybean yields.展开更多
Structure-soil interface friction characteristics is of importance to investigate the interaction between engineering structures and soils,especially for offshore structures.The interface friction behavior between mar...Structure-soil interface friction characteristics is of importance to investigate the interaction between engineering structures and soils,especially for offshore structures.The interface friction behavior between marine clay and structural materials with different roughness was studied in this paper by using 3D optical scanning tests,a modified direct shear device and numerical simulation.Relationships between the surface roughness of structures,water content and interface friction angle were presented by model tests.The increase of water contents decreased the interface friction angles.For interfaces with different roughness,the interface friction angles will be smaller than that of the soil when the water content exceeds a certain value.The roughness of the interface and the water content of the soil are mutually coupled to influence the coefficient of friction(COF).This paper proposed a Finite Element Method(FEM)to simulate the interface direct shear tests of structures with different roughness.The surface models with different roughness are established based on the structure data obtained by 3D scanning.The Coupled Eulerian-Lagrangian(CEL)approach was employed to analyse soils sheared by irregular surfaces.The interface behavior for interfaces with different roughness under cyclic shear stresses was analyzed by FEM.展开更多
Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the ar...Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the artificial land is essential,yet challenging.Here,we use an improved fiber-optic monitoring system for its subsurface multi-physical characterization.The system enables us to gather spatiotemporal distribution of various parameters,including strata deformation,temperature,and moisture.Yan’an New District was selected as a case study to conduct refined in-situ monitoring through a 77 m-deep borehole and a 30 m-long trench.Findings reveal that the ground settlement involves both the deformation of the filling loess and the underlying intact loess.Notably,the filling loess exhibits a stronger creep capability compared to underlying intact loess.The deformation along the profile is unevenly distributed,with a positive correlation with soil moisture.Water accumulation has been observed at the interface between the filling loess and the underlying intact loess,leading to a significant deformation.Moreover,the temperature and moisture in the filling loess have reached a new equilibrium state,with their depths influenced by atmospheric conditions measuring at 31 m and 26 m,respectively.The refined investigation allows us to identify critical layers that matter the sustainable development of newly created urban areas,and provide improved insights into the evolution mechanisms of land creation.展开更多
文摘Construction grammar attempts to reveal the nature, structure, and functions of language. As a theoretical system of language based on cognitive linguistics, construction grammar is a reaction and thus a contrast to the traditional generative grammar. This paper tries to outline the major propositions of construction grammar and construction theory, analyses the significance of constructions and their relations to second language acquisition (SLA) and the routes of construction acquisition in SLA, plus the orientations in research on the relations between construction acquisition and SLA.
基金the 2013 major project of the Key Research Bases of Humanities and Social Sciences of the Ministry of Education of the People’s Republic of China“Research on the Establishment and Application of the Knowledge Database of Modern Chinese Construction Grammar”(13JJD740001)the 2015 major project of the Key Research Bases of Humanities and Social Sciences of the Ministry of Education of the People’s Republic of China“Semantic analysis of Construction Grammar and Its Annotation in the Corpus”(15JJD740002).
文摘“Form-meaning pair”is not a distinctive feature of constructions,but a universal feature of all things.A construction must be a structure.Morphemes are the smallest sound-meaning assemblies,but they only represent a symbolic relationship which has no internal structure;thus,they are not constructions.In addition,if morphemes are also treated as constructions,there is a problem of“heterogeneity”in understanding the“form”of constructions.As to the rising“constructionist”and the traditional“atomist”dichotomy,we feel the“constructionist”approach complies better with the actual linguistic life.Construction Grammar leads people to pay close attention to the integrity of constructions and the cognitive mechanisms behind linguistic facts.Therefore,it is of great value both theoretically and practically.However,since Construction Grammar has not yet displayed a distinct value in terms of methodology,we must be careful not to overrate it or overestimate it.
基金supported by the Humanities and Social Sciences Research Planning Fund of Ministry of Education for Western and Frontier Areas(14XJA740001)。
文摘English gerund construction is a system composed of 3 variants, including "Gerund + Φ", "Gerund + of + NP", and "Gerund + NP". The noun and verb attributes of the 3 variants are recursive, and in theory their frequencies vary regularly in different styles. An abstract is placed before the beginning of an academic papers, which has the basic characteristics of conciseness and generalization, and has special requirements for the use of gerunds. The purpose of this study was to empirically explore the system of gerund construction in abstracts of natural science and social science papers, and to specifically explore the inherent characteristics of noun and verb properties of the 3 variants. For this purpose, two corpora were constructed, one is about abstracts of natural science papers, and the other is about abstracts of social science papers. Finally, the results of chi-square test showed that there was no significant difference in the frequencies of the 3 variants in the abstracts of natural science and social science papers, and the two corpora can be studied as a whole. In the combined corpus, there were significant differences in the frequencies of the 3 gerund variants. The frequencies of these 3 variants and their gerund properties showed a recursive change.
文摘Creativity is a design feature of human language.This paper presents a cognitive model of verbal creativity that draws on insights from the psychological research into creativity-particularly Glaveanu's 5A model that distinguishes five crucial perspectives on a creative act(actors,audience,artefacts,actions and affordances).The paper will outline a linguistic version of this model that adopts Construction Grammar as its theoretical foundation.The resulting"5C model of constructional creativity"argues that the central elements of linguistic creativity are constructors,co-constructors,constructs,constructional blending and the constructional network.
文摘This study aims at analyzing the tendency and change in the research on construction grammar from 2010 to 2020.Descriptively,this study includes the publication year,research topic,research direction,research content,and the research methods.Twenty-four CSSCI journals were selected as the research samples using the keyword–“Construction Grammar.”The research topics mainly include Chinese construction research,foreign language construction research,and comparative studies on Chinese and other language constructions.The results showed that there are many Chinese construction research,but the other two research topics still require improvement.Ontology research was the main focus;acquisition research and teaching research are worthy for further exploration.Case studies and theoretical studies were the most concerned contents,whereas studies on language acquisition,pedagogy,and corpus construction were feeble.Qualitative description and theoretical review were the most popular methods,while empirical,quantitative,and diachronic analyses were less frequently used.After analyzing the trends,it has been predicted that the research on construction grammar would continue to heat up in the future,and there would be more research directions and contents along with diversified research methods.
文摘Automatic control technology is the basis of road robot improvement,according to the characteristics of construction equipment and functions,the research will be input type perception from positioning acquisition,real-world monitoring,the process will use RTK-GNSS positional perception technology,by projecting the left side of the earth from Gauss-Krueger projection method,and then carry out the Cartesian conversion based on the characteristics of drawing;steering control system is the core of the electric drive unmanned module,on the basis of the analysis of the composition of the steering system of unmanned engineering vehicles,the steering system key components such as direction,torque sensor,drive motor and other models are established,the joint simulation model of unmanned engineering vehicles is established,the steering controller is designed using the PID method,the simulation results show that the control method can meet the construction path demand for automatic steering.The path planning will first formulate the construction area with preset values and realize the steering angle correction during driving by PID algorithm,and never realize the construction-based path planning,and the results show that the method can control the straight path within the error of 10 cm and the curve error within 20 cm.With the collaboration of various modules,the automatic construction simulation results of this robot show that the design path and control method is effective.
基金Sponsored by Germplasm Collection and Conservation Project for the Forest and Grass Germplasm Resources in Anhui Province in 2024(hxkt2024111)Science and Technology Plan Project of Huangshan(2022KN-02)+1 种基金Humanities and Social Sciences Research Project of Anhui Higher Education Institutions(SKHS2019B07)Key School-level Project of Huangshan University(2022xkjzd004).
文摘The continuous progress of urbanization has driven the continuous development and innovation of landscape planning and design.Focused on the important design method of modern construction art,this study analyzed its concepts and characteristics,and made deep exploration to its application in landscape planning and design.The results indicated that modern construction art had a significant impact on landscape spatial planning and layout,spatial design forms,and spatial ornaments.The use of modern construction art concepts could make landscape design more scientific,artistic,and humane,creating higher quality leisure and entertainment venues for audiences.
文摘构式语法研究的新趋势很多,涉及构式的建构过程、构式从词素到分句到更大单位的拓展路径、构式视角下的语言习得与认知,以及构式的历史比较研究等。这些关于构式研究的新问题在牛津大学出版社出版的The Oxford Handbook of Construction Grammar一书中得到了充分关注。本文将从内容结构、理论特色、研究局限三个方面详细阐述构式语法研究的新发展。
文摘Bio-cement and bio-concrete are innovative solutions for sustainable construction, aiming to reduce environmental impact while maintaining the durability and versatility of building materials. Bio-cement is an eco-friendly alternative to traditional cement, produced through Microbially Induced Calcium Carbonate Precipitation (MICP), which mimics natural biomineralization processes. This method reduces CO2 emissions and enhances the strength and durability of construction materials. Bio-concrete incorporates bio-cement into concrete, creating a self-healing material. When cracks form in bio-concrete, dormant bacteria within the material become active in the presence of water, producing limestone to fill the cracks, extending the material’s lifespan and reducing the need for repairs. The environmental impact of traditional cement production is significant, with cement generation accounting for up to 8% of global carbon emissions. Creative solutions are needed to develop more sustainable construction materials, with some efforts using modern innovations to make concrete ultra-durable and others turning to science to create affordable bio-cement. The research demonstrates the potential of bio-cement to revolutionize sustainable building practices by offering a low-energy, low-emission alternative to traditional cement while also addressing environmental concerns. The findings suggest promising applications in various construction scenarios, including earthquake-prone areas, by enhancing material durability and longevity through self-repair mechanisms.
基金Research on Zero Emission Campus Construction Based on Plant Community Optimization(Project number:KJQN202305605)。
文摘The development of the construction industry is shifting towards low-carbon construction,so it is necessary to improve and optimize related construction concepts,methods,and processes.By improving resource and energy control efficiency in building projects,minimizing construction waste,and reducing environmental impact,a foundation for the sustainable development of the industry can be established.This paper mainly analyzes the significance of low-carbon energy-saving construction technology and the control factors of construction,summarizes the status quo of the development of building energy-saving construction,and puts forward strategies for applying building energy-saving construction technology.These strategies serve to achieve low-carbon and energy-saving goals to promote the healthy development of energy-saving construction.
文摘Urbanization has led to the rapid development of the construction industry.However,this has also led to higher requirements for the construction engineering management.Other than the quality monitoring of engineering construction,the energy-saving properties of the building should also be considered.Therefore,a scientific management approach should be adopted to improve green building management.This paper primarily examines the importance of quality management in green building construction,along with the factors influencing it.It also identifies the quality issues present in current green building construction.Finally,it proposes measures for quality management in the green building construction process to facilitate the industry’s healthy development.
文摘With the gradual acceleration of the urbanization process,the construction industry has been developing rapidly.As the key link to ensure the quality and safety of the project,construction management and construction quality control are of great significance to enhance the competitiveness of construction enterprises and realize sustainable development.In this paper,the effective strategy of construction management and the effective strategy of construction quality control will be discussed in depth,aiming at providing useful management and quality control strategies for construction enterprises.
文摘In recent years,China has made significant progress in the construction of highways,resulting in an improved highway network that has provided robust support for economic and social development.However,the rapid expansion of highway construction,power supply,and distribution has led to several challenges in mechanical and electrical engineering technology.Ensuring the safe,stable,and cost-effective operation of the power supply and distribution system to meet the diverse requirements of highway operations has become a pressing issue.This article takes an example of a highway electromechanical engineering power supply and distribution construction project to provide insight into the construction process of highway electromechanical engineering power supply and distribution technology.
文摘As the urban populations grow,the number and size of subway construction projects are increasing while also meeting higher construction standards.So,subway construction projects must have a better understanding of construction technology.This article focuses on the construction technology of the subway tunnel expansion under the bridge foundation.By analyzing the engineering characteristics of the bridge foundation and using a project as an example,this article provides a detailed discussion of the construction process of tunnel expansion under a bridge foundation.This article aims to serve as a reference for subway tunnel construction in China to ensure the key points of construction technology are understood,thus improving construction quality and laying a solid technical foundation for the sustainable development of urban rail engineering.
基金Supported by School-level Natural Science Project of Jiangxi University of Technology(232ZRYB02).
文摘The high-quality development of the construction industry fundamentally stems from the significant improvement of total factor productivity.Therefore,it is of crucial significance for promoting the development of the construction industry to a higher level by scientifically and accurately measuring the total factor productivity of the construction industry and deeply analyzing the influencing factors behind it.Based on a comprehensive consideration of research methods and influencing factors,this paper systematically reviews the existing relevant literature on total factor productivity in the construction industry,aiming to reveal the current research development trend in this field and point out potential problems.This effort aims to provide a solid theoretical foundation and valuable reference for further in-depth research,and jointly promote the continuous progress and development of total factor productivity research in the construction industry.
基金supported by the National Key Research and Development Program of China(2023YFB3711300 and 2021YFF0500300)the Strategic Research and Consulting Project of the Chinese Academy of Engineering(2023-XZ-90 and 2023-JB-09-10)the National Key Research and Development Program of China(2021YFF0500300).
文摘The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of its good sustainability and acceptable economic cost,triggering the development of various types of extraterrestrial construction materials.A comprehensive survey and comparison of materials from the perspective of performance was conducted to provide suggestions for material selection and optimization.Thirteen types of typical construction materials are discussed in terms of their reliability and applicability in extreme extraterrestrial environment.Mechanical,thermal and optical,and radiation-shielding properties are considered.The influencing factors and optimization methods for these properties are analyzed.From the perspective of material properties,the existing challenges lie in the comprehensive,long-term,and real characterization of regolith-based construction materials.Correspondingly,the suggested future directions include the application of high-throughput characterization methods,accelerated durability tests,and conducting extraterrestrial experiments.
基金supported by the National Natural Science Foundation of China(52130801,U20A20312,52178271,and 52077213)the National Key Research and Development Program of China(2021YFF0500903)。
文摘Identifying workers’construction activities or behaviors can enable managers to better monitor labor efficiency and construction progress.However,current activity analysis methods for construction workers rely solely on manual observations and recordings,which consumes considerable time and has high labor costs.Researchers have focused on monitoring on-site construction activities of workers.However,when multiple workers are working together,current research cannot accu rately and automatically identify the construction activity.This research proposes a deep learning framework for the automated analysis of the construction activities of multiple workers.In this framework,multiple deep neural network models are designed and used to complete worker key point extraction,worker tracking,and worker construction activity analysis.The designed framework was tested at an actual construction site,and activity recognition for multiple workers was performed,indicating the feasibility of the framework for the automated monitoring of work efficiency.
基金supported by the National Natural Science Foundation of China(41871184)the National Social Science Fund of China(21ZDA056)the Scientific and Technological Innovation Project of the Chinese Academy of Agricultural Sciences(10-IAED-ZT-01-2023and 10-IAED-RC-07-2023)。
文摘Food security is a strategic priority for a country’s economic development.In China,high-standard farmland construction(HSFC)is an important initiative to stabilize grain production and increase grain production capacity.Based on panel data from 31 sample provinces,autonomous regions,and municipalities in China from 2005–2017,this study explored the impact of HSFC on grain yield using the difference-in-differences(DID)method.The results showed that HSFC significantly increased total grain production,which is robust to various checks.HSFC increased grain yield through three potential mechanisms.First,it could increase the grain replanting index.Second,it could effectively reduce yield loss due to droughts and floods.Last,HSFC could strengthen the cultivated land by renovating the low-and medium-yielding fields.Heterogeneity analysis found that the HSFC farmland showed a significant increase in grain yield only in the main grain-producing areas and balanced areas.In addition,HSFC significantly increased the yields of rice,wheat,and maize while leading to a reduction in soybean yields.The findings suggest the government should continue to promote HSFC,improve construction standards,and strictly control the“non-agriculturalization”and“non-coordination”of farmland to increase grain production further.At the same time,market mechanisms should be used to incentivize soybean farming,improve returns and stabilize soybean yields.
基金supported by a grant from the National Natural Science Foundations of China(No.52171282)supported by Taishan Scholars Program of Shandong Province,China(No.tsqn202306098)the Shandong Provincial Key Research and Development Plan,China(No.2021ZLGX04).
文摘Structure-soil interface friction characteristics is of importance to investigate the interaction between engineering structures and soils,especially for offshore structures.The interface friction behavior between marine clay and structural materials with different roughness was studied in this paper by using 3D optical scanning tests,a modified direct shear device and numerical simulation.Relationships between the surface roughness of structures,water content and interface friction angle were presented by model tests.The increase of water contents decreased the interface friction angles.For interfaces with different roughness,the interface friction angles will be smaller than that of the soil when the water content exceeds a certain value.The roughness of the interface and the water content of the soil are mutually coupled to influence the coefficient of friction(COF).This paper proposed a Finite Element Method(FEM)to simulate the interface direct shear tests of structures with different roughness.The surface models with different roughness are established based on the structure data obtained by 3D scanning.The Coupled Eulerian-Lagrangian(CEL)approach was employed to analyse soils sheared by irregular surfaces.The interface behavior for interfaces with different roughness under cyclic shear stresses was analyzed by FEM.
基金supported by National Natural Science Foundation of China(Grant Nos.4203070 and 41977217)the Key Research&Development Program of Shaanxi Province(Grant No.2020ZDLSF06-03).
文摘Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the artificial land is essential,yet challenging.Here,we use an improved fiber-optic monitoring system for its subsurface multi-physical characterization.The system enables us to gather spatiotemporal distribution of various parameters,including strata deformation,temperature,and moisture.Yan’an New District was selected as a case study to conduct refined in-situ monitoring through a 77 m-deep borehole and a 30 m-long trench.Findings reveal that the ground settlement involves both the deformation of the filling loess and the underlying intact loess.Notably,the filling loess exhibits a stronger creep capability compared to underlying intact loess.The deformation along the profile is unevenly distributed,with a positive correlation with soil moisture.Water accumulation has been observed at the interface between the filling loess and the underlying intact loess,leading to a significant deformation.Moreover,the temperature and moisture in the filling loess have reached a new equilibrium state,with their depths influenced by atmospheric conditions measuring at 31 m and 26 m,respectively.The refined investigation allows us to identify critical layers that matter the sustainable development of newly created urban areas,and provide improved insights into the evolution mechanisms of land creation.