期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Analytical solutions of ground settlement induced by yaw in a space curved shield tunnel
1
作者 Jiannan Xie Pengfei Li +2 位作者 Mingju Zhang Fei Jia Shaohua Li 《Underground Space》 SCIE EI CSCD 2023年第6期86-103,共18页
This paper aims to provide the analytical solutions of the ground settlement for a space curved shield tunnel in the case of yaw construction.Settlement inducements include ground loss and construction loads,and two c... This paper aims to provide the analytical solutions of the ground settlement for a space curved shield tunnel in the case of yaw construction.Settlement inducements include ground loss and construction loads,and two corresponding analytical models have been proposed in this study.Three-dimensional image theory has been adopted to calculate the ground settlement due to ground loss.Yawrelated parameters are introduced into the calculation model to deduce the relevant laws of the ground settlement.Based on modified Mindlin solutions,analytical models are established to calculate the ground settlement induced by construction loads,such as the frontal additional thrust,axial friction of shield shell,and the grouting pressure.The method of calculating the position of the shield machine in the ground is refined,and the influence area of construction loads from the shield machine is optimized.Subsequently,the obtained solutions are validated by a numerical model and field data.Besides,a comparison reveals that the proposed model is the composition of three classical analytical models,thus it excels them in solving the problem mentioned.Finally,parametric analyses of yaw are conducted to examine yaw angle and pitch angle on ground settlement.The proposed model can effectively predict ground settlement caused by the spatial linear shield tunneling process. 展开更多
关键词 Shield tunnel Space line Yaw excavation Ground loss construction load Ground settlement
原文传递
Pollutant removal from municipal wastewater employing baffled subsurface flow and integrated surface flow-floating treatment wetlands 被引量:7
2
作者 Tanveer Saeed Abdullah Al-Muyeed +2 位作者 Rumana Afrin Habibur Rahman Guangzhi Sun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第4期726-736,共11页
This article reports pollutant removal performances of baffled subsurface flow, and integrated surface flow-floating treatment wetland units, when arranged in series for the treatment of municipal wastewater in Bangla... This article reports pollutant removal performances of baffled subsurface flow, and integrated surface flow-floating treatment wetland units, when arranged in series for the treatment of municipal wastewater in Bangladesh. The wetland units (of the hybrid system) included organic, inorganic media, and were planted with nineteen types of macrophytes. The wetland train was operated under hydraulic loading fluctuation and seasonal variation. The performance analyses (across the wetland units) illustrated simultaneous denitrification and organics removal rates in the first stage vertical flow wetland, due to organic carbon leaching from the employed organic media. Higher mean organics removal rates (656.0 g COD](m2.day)) did not completely inhibit nitrification in the first stage vertical flow system; such pattern could be linked to effective utilization of the trapped oxygen, as the flow was directed throughout the media by the baffle walls. Second stage horizontal flow wetland showed enhanced biodegradable organics removal, which depleted organic carbon availability for denitrification. The final stage integrated wetland system allowed further nitrogen removal from wastewater, via nutrient uptake by plant roots (along with nitrification), and generation of organic carbon (by the dead macrophytes) to support denitrification. The system achieved higher E. coli mortality through protozoa predation, E. coli oxidation, and destruction by UV radiation. In general, enhanced pollutant removal efflciencies as demonstrated by the structurally modified hybrid wetland system signify the necessity of such modification, when operated under adverse conditions such as: substantial input organics loading, hydraulic loading fluctuation, and seasonal variation. 展开更多
关键词 constructed wetlands loading fluctuation media nitrogen organics seasonal variation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部