With the rapid development of globalization and information technology,intellectual property has been one of the key drivers of economic growth,and the construction of intellectual property system has become an import...With the rapid development of globalization and information technology,intellectual property has been one of the key drivers of economic growth,and the construction of intellectual property system has become an important criterion for measuring the quality of business environment.This article is intended to explore the current status of intellectual property system construction in China,the challenges,and its relationship with the business environment,to propose the corresponding countermeasures and suggestions.The study finds that the legal system of intellectual property in China is gradually improving,and judicial and administrative protection are continuously strengthened.However,the challenges still remain such as frequent infringements,rights hard to protect and insufficient international cooperation.These issues not only affect the legitimate rights and interests of innovation entities,but also for the market fairness and the level of the business environment.Therefore,this article proposes that strengthening the perfection of the intellectual property legal system,enhancing intellectual property services and support capabilities,strengthening international cooperation and exchanges,and accelerating the cultivation of composite talents.It aims to provide theoretical references for the construction of intellectual property system and the optimization of the business environment,promote the high-quality development of economy and enhance the global competitiveness of the country.展开更多
With the rapid development of information technology,the demand for talents in the field of software engineering is growing.In order to cultivate high-quality software engineering talents who meet the market demand,un...With the rapid development of information technology,the demand for talents in the field of software engineering is growing.In order to cultivate high-quality software engineering talents who meet the market demand,universities have continuously carried out the construction of software engineering majors.Accreditation Board for Engineering and Technology(ABET)certification,as an internationally recognized higher education quality assurance system,provides important reference and guidance for the construction of software engineering majors.Guided by student learning outcomes and core competencies,combined with the characteristics of software engineering talent cultivation,the innovation of talent cultivation mode takes industry-education integration and school-enterprise cooperation as the main development paths and explores comprehensive reform of the major in terms of professional positioning and goals,curriculum system,teaching conditions,and teachers.This comprehensive reform model has effectively promoted the development of major construction and improved the quality of talent cultivation.展开更多
This article analyzes the path to constructing first-class undergraduate majors in finance,using the finance major as a case study.Through analysis,it aims to offer reference and inspiration for enhancing the quality ...This article analyzes the path to constructing first-class undergraduate majors in finance,using the finance major as a case study.Through analysis,it aims to offer reference and inspiration for enhancing the quality of finance education in China and supporting the healthy development of the financial industry.The article begins by examining the current status of finance majors,followed by an analysis of the necessity for establishing first-class undergraduate programs.Finally,it provides a detailed exploration of the specific methods for building such programs in finance.The findings indicate that accelerating the construction of first-class undergraduate finance majors is a long-term and challenging task that requires the combined efforts of the government,universities,industry,and various social sectors.Through comprehensive and innovative reforms in areas such as training objectives and positioning,curriculum development,teaching teams,and practical instruction,the quality and level of finance education can be effectively elevated,thereby cultivating more high-caliber financial professionals who meet the demands of the times.展开更多
The development of industrial cluster plays a significant influence on the major construction of higher vocational colleges. In this paper, in combination with the practice of Jiangyin Polytechnic College, the interac...The development of industrial cluster plays a significant influence on the major construction of higher vocational colleges. In this paper, in combination with the practice of Jiangyin Polytechnic College, the interaction relationship between the construction of the major clusters in higher vocational colleges and the development of the regional industry clusters is analyzed, and then the significance and idea of constructing the maior clusters are introduced from the perspective of industrial cluster.展开更多
The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of it...The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of its good sustainability and acceptable economic cost,triggering the development of various types of extraterrestrial construction materials.A comprehensive survey and comparison of materials from the perspective of performance was conducted to provide suggestions for material selection and optimization.Thirteen types of typical construction materials are discussed in terms of their reliability and applicability in extreme extraterrestrial environment.Mechanical,thermal and optical,and radiation-shielding properties are considered.The influencing factors and optimization methods for these properties are analyzed.From the perspective of material properties,the existing challenges lie in the comprehensive,long-term,and real characterization of regolith-based construction materials.Correspondingly,the suggested future directions include the application of high-throughput characterization methods,accelerated durability tests,and conducting extraterrestrial experiments.展开更多
The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission...The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission.Lunar lava tubes are special underground caves formed by volcanic eruptions and are considered as ideal natural shelters and scientific laboratories for lunar base construction.This paper begins with an in-depth overview of the geological origins,exploration history,and distribution locations of lunar lava tubes.Subsequently,it delves into the presentation of four distinctive advantages and typical concepts for constructing bases within lava tubes,summarizing the ground-based attempts made thus far in lunar lava tube base construction.Field studies conducted on a lava tube in Hainan revealed rock compositions similar to those found during the Apollo missions and clear lava tube structures,making it a promising analog site.Lastly,the challenges and opportunities encountered in the field of geotechnical engineering regarding the establishment of lunar lava tube bases are discussed,encompassing cave exploration technologies,in-situ testing methods,geomechanical properties under lunar extreme environments,base design and structural stability assessment,excavation and reinforcement techniques,and simulated Earth-based lava tube base.展开更多
Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the ar...Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the artificial land is essential,yet challenging.Here,we use an improved fiber-optic monitoring system for its subsurface multi-physical characterization.The system enables us to gather spatiotemporal distribution of various parameters,including strata deformation,temperature,and moisture.Yan’an New District was selected as a case study to conduct refined in-situ monitoring through a 77 m-deep borehole and a 30 m-long trench.Findings reveal that the ground settlement involves both the deformation of the filling loess and the underlying intact loess.Notably,the filling loess exhibits a stronger creep capability compared to underlying intact loess.The deformation along the profile is unevenly distributed,with a positive correlation with soil moisture.Water accumulation has been observed at the interface between the filling loess and the underlying intact loess,leading to a significant deformation.Moreover,the temperature and moisture in the filling loess have reached a new equilibrium state,with their depths influenced by atmospheric conditions measuring at 31 m and 26 m,respectively.The refined investigation allows us to identify critical layers that matter the sustainable development of newly created urban areas,and provide improved insights into the evolution mechanisms of land creation.展开更多
The high-quality development of the construction industry fundamentally stems from the significant improvement of total factor productivity.Therefore,it is of crucial significance for promoting the development of the ...The high-quality development of the construction industry fundamentally stems from the significant improvement of total factor productivity.Therefore,it is of crucial significance for promoting the development of the construction industry to a higher level by scientifically and accurately measuring the total factor productivity of the construction industry and deeply analyzing the influencing factors behind it.Based on a comprehensive consideration of research methods and influencing factors,this paper systematically reviews the existing relevant literature on total factor productivity in the construction industry,aiming to reveal the current research development trend in this field and point out potential problems.This effort aims to provide a solid theoretical foundation and valuable reference for further in-depth research,and jointly promote the continuous progress and development of total factor productivity research in the construction industry.展开更多
The earth-rockfill dam is one of the primary dam types in the selection of high dams to be constructed in Western China, since it is characterized by favorable adaptability of the dam foundation; full utilization of l...The earth-rockfill dam is one of the primary dam types in the selection of high dams to be constructed in Western China, since it is characterized by favorable adaptability of the dam foundation; full utilization of local earth, rock, and building-excavated materials; low construction cost; and low cement consumption. Many major technical issues regarding earth-rockfill dams with a height of over 250 m were studied and solved successfully in the construction of the 261.5 m Nuozhadu earth core rockfill dam. This paper describes research achievements and basic conclusions; systematically summarizes the accumulated experiences from the construction of the Nuozhadu Dam and other high earth-rockfill dams; and discusses major technical issues, such as deformation control, seepage control, dam slope stability, safety and control of flood discharging, safety and quality control of dam construction, safety assessments, early warning, and other key technical difficulties. This study also provides a reference and technological support for the future construction of 300 m high earth-rockfill dams.展开更多
Identifying workers’construction activities or behaviors can enable managers to better monitor labor efficiency and construction progress.However,current activity analysis methods for construction workers rely solely...Identifying workers’construction activities or behaviors can enable managers to better monitor labor efficiency and construction progress.However,current activity analysis methods for construction workers rely solely on manual observations and recordings,which consumes considerable time and has high labor costs.Researchers have focused on monitoring on-site construction activities of workers.However,when multiple workers are working together,current research cannot accu rately and automatically identify the construction activity.This research proposes a deep learning framework for the automated analysis of the construction activities of multiple workers.In this framework,multiple deep neural network models are designed and used to complete worker key point extraction,worker tracking,and worker construction activity analysis.The designed framework was tested at an actual construction site,and activity recognition for multiple workers was performed,indicating the feasibility of the framework for the automated monitoring of work efficiency.展开更多
Lunar habitat construction is crucial for successful lunar exploration missions.Due to the limitations of transportation conditions,extensive global research has been conducted on lunar in situ material processing tec...Lunar habitat construction is crucial for successful lunar exploration missions.Due to the limitations of transportation conditions,extensive global research has been conducted on lunar in situ material processing techniques in recent years.The aim of this paper is to provide a comprehensive review,precise classification,and quantitative evaluation of these approaches,focusing specifically on four main approaches:reaction solidification(RS),sintering/melting(SM),bonding solidification(BS),and confinement formation(CF).Eight key indicators have been identified for the construction of low-cost and highperformance systems to assess the feasibility of these methods:in situ material ratio,curing temperature,curing time,implementation conditions,compressive strength,tensile strength,curing dimensions,and environmental adaptability.The scoring thresholds are determined by comparing the construction requirements with the actual capabilities.Among the evaluated methods,regolith bagging has emerged as a promising option due to its high in situ material ratio,low time requirement,lack of hightemperature requirements,and minimal shortcomings,with only the compressive strength falling below the neutral score.The compressive strength still maintains a value of 2–3 MPa.The proposed construction scheme utilizing regolith bags offers numerous advantages,including rapid and large-scale construction,ensured tensile strength,and reduced reliance on equipment and energy.In this study,guidelines for evaluating regolith solidification techniques are provided,and directions for improvement are offered.The proposed lunar habitat design based on regolith bags is a practical reference for future research.展开更多
The development and utilization of lunar resources are entering a critical stage.Immediate focus is needed on key technologies for in-situ resource utilization(ISRU)and lunar base construction.This paper comparatively...The development and utilization of lunar resources are entering a critical stage.Immediate focus is needed on key technologies for in-situ resource utilization(ISRU)and lunar base construction.This paper comparatively analyzes the basic characteristics of lunar regolith samples returned from Chang'e-5(CE-5),Apollo,and Luna missions,focusing on their physical,mechanical,mineral,chemical,and morphological parameters.Given the limited availability of lunar regolith,more than 50 lunar regolith simulants are summarized.The differences between lunar regolith and simulants concerning these parameters are discussed.To facilitate the construction of lunar bases,this article summarizes the advancements in research on construction materials derived from lunar regolith simulants.Based on statistical results,lunar regolith simulant-based composites are classified into 5 types by their strengthening and toughening mechanisms,and a comprehensive analysis of molding methods,preparation conditions,and mechanical properties is conducted.Furthermore,the potential lunar base construction forms are reviewed,and the adaptability of lunar regolith simulant-based composites and lunar base construction methods are proposed.The key demands of lunar bases constructed with lunar regolith-based composites are discussed,including energy demand,in-situ buildability,service performance,and structural availability.This progress contributes to providing essential material and methodological support for future lunar construction.展开更多
This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into f...This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into finite segments in the vertical direction and the Voigt model is applied to simulate the vertical support of the surrounding soil acting on the pile segment.The surrounding soil is divided into finite ring-shaped zones in the radial direction to consider the construction disturbance.Then,the shear complex stiffness at the pile-soil interface is derived by solving the dynamic equilibrium equation for the soil from the outermost to innermost zone.The displacement impedance at the top of an arbitrary pile segment is obtained by solving the dynamic equilibrium equation for the pile and is combined with the vertical support of the surrounding soil to derive the displacement impedance at the bottom of the upper adjacent segment.Further,the displacement impedance at the pile head is obtained based on the impedance function transfer technique.Finally,the reliability of the proposed solution is verified,followed by a sensitivity analysis concerning the coupling effect of the pile parameters,construction disturbance and the vertical support of the surrounding soil on the displacement impedance of the pile.展开更多
China established Xiong’an New Area in Hebei Province in 2017,which is planned to accommodate about 5 million people,aiming to relieve Beijing City of the functions non-essential to its role as China’s capital and t...China established Xiong’an New Area in Hebei Province in 2017,which is planned to accommodate about 5 million people,aiming to relieve Beijing City of the functions non-essential to its role as China’s capital and to expedite the coordinated development of the Beijing-Tianjin-Hebei region.From 2017 to 2021,the China Geological Survey(CGS)took the lead in multi-factor urban geological surveys involving space,resources,environments,and disasters according to the general requirements of“global vision,international standards,distinctive Chinese features,and future-oriented goals”in Xiong’an New Area,identifying the engineering geologic conditions and geologic environmental challenges of this area.The achievements also include a 3D engineering geological structure model for the whole area,along with“one city proper and five clusters”,insights into the ecology and the background endowment of natural resources like land,geothermal resources,groundwater,and wetland of the area before engineering construction,a comprehensive monitoring network of resources and environments in the area,and the“Transparent Xiong’an”geological information platform that is open,shared,dynamically updated,and three-dimensionally visualized.China’s geologists and urban geology have played a significant role in the urban planning and construction of Xiong’an New Area,providing whole-process geological solutions for urban planning,construction,operation and management.The future urban construction of Xiong’an New Area will necessitate the theoretical and technical support of earth system science(ESS)from various aspects,and the purpose is to enhance the resilience of the new type of city and to provide support for the green,low-carbon,and sustainable development of this area.展开更多
Automatic control technology is the basis of road robot improvement,according to the characteristics of construction equipment and functions,the research will be input type perception from positioning acquisition,real...Automatic control technology is the basis of road robot improvement,according to the characteristics of construction equipment and functions,the research will be input type perception from positioning acquisition,real-world monitoring,the process will use RTK-GNSS positional perception technology,by projecting the left side of the earth from Gauss-Krueger projection method,and then carry out the Cartesian conversion based on the characteristics of drawing;steering control system is the core of the electric drive unmanned module,on the basis of the analysis of the composition of the steering system of unmanned engineering vehicles,the steering system key components such as direction,torque sensor,drive motor and other models are established,the joint simulation model of unmanned engineering vehicles is established,the steering controller is designed using the PID method,the simulation results show that the control method can meet the construction path demand for automatic steering.The path planning will first formulate the construction area with preset values and realize the steering angle correction during driving by PID algorithm,and never realize the construction-based path planning,and the results show that the method can control the straight path within the error of 10 cm and the curve error within 20 cm.With the collaboration of various modules,the automatic construction simulation results of this robot show that the design path and control method is effective.展开更多
Transcription factor NAC102 plays an important role in the abiotic stress responses of plants.In this study,the promoter sequence of 3000 bp located in the upstream of the BjNAC102 gene was cloned from Brassica juncea...Transcription factor NAC102 plays an important role in the abiotic stress responses of plants.In this study,the promoter sequence of 3000 bp located in the upstream of the BjNAC102 gene was cloned from Brassica juncea‘Sichuan Yellow Seed’by using the homologous cloning method.The expression vector of the GUS gene driven by the BjNAC102 promoter was constructed by seamless cloning technology.The results showed that the sequence of the promoter of the BjNAC102 gene contained many cis-acting elements involved in light responsiveness,gibberellinresponsive element,and auxin-responsive element.It was speculated that BjNAC102 played an important role in the abiotic stress response in Brassica juncea.The expression vector of the promoter of the BjNAC102 gene was constructed,which layed a foundation for further studies of the expression pattern of the BjNAC102 gene in Brassica juncea.展开更多
Green and low-carbon development of construction industry is one of the important ways to achieve the"dual carbon"goal in China.This study first measured the carbon emissions of the construction industry in ...Green and low-carbon development of construction industry is one of the important ways to achieve the"dual carbon"goal in China.This study first measured the carbon emissions of the construction industry in 30 provinces in China,and then used the Dagum Gini coefficient and its decomposition method to explore the regional differences and sources of carbon emissions of the construction industry in China.The results show that the carbon emissions of construction industry in China generally show an upward trend,and there are significant differences in carbon emissions of construction industry among provinces,and the main source of regional differences is inter-regional differences.However,the contribution rate of inter-regional differences showed a significant downward trend,while the contribution rate of hyperbolic density increased day by day,and the contribution rate of intra-regional differences increased slightly.The results of this study will provide a reference for China to formulate more reasonable carbon emission reduction targets and differentiation strategies for the construction industry.展开更多
The continuous progress of urbanization has driven the continuous development and innovation of landscape planning and design.Focused on the important design method of modern construction art,this study analyzed its c...The continuous progress of urbanization has driven the continuous development and innovation of landscape planning and design.Focused on the important design method of modern construction art,this study analyzed its concepts and characteristics,and made deep exploration to its application in landscape planning and design.The results indicated that modern construction art had a significant impact on landscape spatial planning and layout,spatial design forms,and spatial ornaments.The use of modern construction art concepts could make landscape design more scientific,artistic,and humane,creating higher quality leisure and entertainment venues for audiences.展开更多
Accelerating the transformation of agricultural scientific and technological achievements is a key link in implementing innovation-driven development strategy and rural revitalization strategy,and improving developmen...Accelerating the transformation of agricultural scientific and technological achievements is a key link in implementing innovation-driven development strategy and rural revitalization strategy,and improving development quality and core competitiveness.How to build a scientific and systematic transformation system of scientific and technological achievements and improve the overall management level of scientific and technological achievements transformation of agricultural scientific research institutes is one of the key tasks to measure how a scientific research institute supports industry and serves society.Taking the Chinese Academy of Tropical Agricultural Sciences as an example,this paper explores the construction and practice of its scientific and technological achievements transformation system since the 13 th Five-Year Plan period.By arranging the current situation of resource elements for the transformation of scientific and technological achievements,analyzing the progress of the construction of the scientific and technological achievements transformation system,summarizing the practical results of the scientific and technological achievements transformation system,this paper puts forward 10 strategies and measures(implementing key projects for the transformation and application of scientific and technological achievements;striving to promote the transformation and application of on-duty scientific and technological achievements;accelerating the development and utilization of advantageous and characteristic resources;strengthening the use and protection of intellectual property rights;actively expanding cooperation activities between government,industry and research;increasing special financial support for the transformation of scientific and technological achievements;innovating state-owned asset management to accelerate scientific and technological development;piloting equity incentives to expand scientific and technological development channels to increase income;striving to create a relaxed environment for the transformation of scientific and technological achievements,effectively create scientific and technological value,enhance the development strength of the institute,and promote high-quality industrial development)in order to provide a useful reference for the transformation of scientific and technological achievements of agricultural research institutes.展开更多
In order to assess the environmental risks caused by carbon emissions from the construction industry in Hebei Province of China,an environmental risk assessment model based on forest carbon sink threshold was construc...In order to assess the environmental risks caused by carbon emissions from the construction industry in Hebei Province of China,an environmental risk assessment model based on forest carbon sink threshold was constructed to evaluate the carbon emission risks of the construction industry in Hebei Province,China from 2005 to 2020.The results are shown as follows:(1)The overall carbon emissions of the construction industry in Hebei Province of China showed an inverted"V"-shaped evolution trend during the past 16 years.Tangshan and Shijiazhuang maintained high carbon emissions,while Langfang,Hengshui and Baoding saw rapid increases in carbon emissions.(2)The environmental safety threshold of carbon emission from the construction industry in Hebei Province,China,has been continuously improved,and the provincial environmental safety threshold is between 9475080-23144760 tons;The environmental safety threshold was the highest in Baoding and Langfang,and the lowest in Xingtai.(3)In the past 16 years,the carbon emission risk of the construction industry in Hebei Province of China has been in a state of extremely serious risk,and the risk index generally presents an inverted"V"type trend.(4)The carbon emission risk of Hebei city in China presents a spatial pattern of"high in the south and low in the north",which goes through two stages:risk increase period and risk reduction period.展开更多
基金Guizhou Provincial University Humanities and Social Sciences Research Project in 2024"Enhancing the Development of New Productive Forces through University Technological Innovation and Intellectual Property Management"(2024RW256)Guizhou University of Commerce Research Project in 2022"Study on the Ideas and Pathways to Drive Agricultural Powerhouse through Digital Economy"(2022XJZX315)。
文摘With the rapid development of globalization and information technology,intellectual property has been one of the key drivers of economic growth,and the construction of intellectual property system has become an important criterion for measuring the quality of business environment.This article is intended to explore the current status of intellectual property system construction in China,the challenges,and its relationship with the business environment,to propose the corresponding countermeasures and suggestions.The study finds that the legal system of intellectual property in China is gradually improving,and judicial and administrative protection are continuously strengthened.However,the challenges still remain such as frequent infringements,rights hard to protect and insufficient international cooperation.These issues not only affect the legitimate rights and interests of innovation entities,but also for the market fairness and the level of the business environment.Therefore,this article proposes that strengthening the perfection of the intellectual property legal system,enhancing intellectual property services and support capabilities,strengthening international cooperation and exchanges,and accelerating the cultivation of composite talents.It aims to provide theoretical references for the construction of intellectual property system and the optimization of the business environment,promote the high-quality development of economy and enhance the global competitiveness of the country.
基金Digital Twin and Acoustic Perception Research Team(2021XJTD06)。
文摘With the rapid development of information technology,the demand for talents in the field of software engineering is growing.In order to cultivate high-quality software engineering talents who meet the market demand,universities have continuously carried out the construction of software engineering majors.Accreditation Board for Engineering and Technology(ABET)certification,as an internationally recognized higher education quality assurance system,provides important reference and guidance for the construction of software engineering majors.Guided by student learning outcomes and core competencies,combined with the characteristics of software engineering talent cultivation,the innovation of talent cultivation mode takes industry-education integration and school-enterprise cooperation as the main development paths and explores comprehensive reform of the major in terms of professional positioning and goals,curriculum system,teaching conditions,and teachers.This comprehensive reform model has effectively promoted the development of major construction and improved the quality of talent cultivation.
基金Scientific Research Program Funded by Education Department of Shaanxi Provincial Government(Program No.23JK0166)。
文摘This article analyzes the path to constructing first-class undergraduate majors in finance,using the finance major as a case study.Through analysis,it aims to offer reference and inspiration for enhancing the quality of finance education in China and supporting the healthy development of the financial industry.The article begins by examining the current status of finance majors,followed by an analysis of the necessity for establishing first-class undergraduate programs.Finally,it provides a detailed exploration of the specific methods for building such programs in finance.The findings indicate that accelerating the construction of first-class undergraduate finance majors is a long-term and challenging task that requires the combined efforts of the government,universities,industry,and various social sectors.Through comprehensive and innovative reforms in areas such as training objectives and positioning,curriculum development,teaching teams,and practical instruction,the quality and level of finance education can be effectively elevated,thereby cultivating more high-caliber financial professionals who meet the demands of the times.
文摘The development of industrial cluster plays a significant influence on the major construction of higher vocational colleges. In this paper, in combination with the practice of Jiangyin Polytechnic College, the interaction relationship between the construction of the major clusters in higher vocational colleges and the development of the regional industry clusters is analyzed, and then the significance and idea of constructing the maior clusters are introduced from the perspective of industrial cluster.
基金supported by the National Key Research and Development Program of China(2023YFB3711300 and 2021YFF0500300)the Strategic Research and Consulting Project of the Chinese Academy of Engineering(2023-XZ-90 and 2023-JB-09-10)the National Key Research and Development Program of China(2021YFF0500300).
文摘The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of its good sustainability and acceptable economic cost,triggering the development of various types of extraterrestrial construction materials.A comprehensive survey and comparison of materials from the perspective of performance was conducted to provide suggestions for material selection and optimization.Thirteen types of typical construction materials are discussed in terms of their reliability and applicability in extreme extraterrestrial environment.Mechanical,thermal and optical,and radiation-shielding properties are considered.The influencing factors and optimization methods for these properties are analyzed.From the perspective of material properties,the existing challenges lie in the comprehensive,long-term,and real characterization of regolith-based construction materials.Correspondingly,the suggested future directions include the application of high-throughput characterization methods,accelerated durability tests,and conducting extraterrestrial experiments.
基金supported by the National Natural Science Foundation of China(Nos.52125903 and 52339001).
文摘The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission.Lunar lava tubes are special underground caves formed by volcanic eruptions and are considered as ideal natural shelters and scientific laboratories for lunar base construction.This paper begins with an in-depth overview of the geological origins,exploration history,and distribution locations of lunar lava tubes.Subsequently,it delves into the presentation of four distinctive advantages and typical concepts for constructing bases within lava tubes,summarizing the ground-based attempts made thus far in lunar lava tube base construction.Field studies conducted on a lava tube in Hainan revealed rock compositions similar to those found during the Apollo missions and clear lava tube structures,making it a promising analog site.Lastly,the challenges and opportunities encountered in the field of geotechnical engineering regarding the establishment of lunar lava tube bases are discussed,encompassing cave exploration technologies,in-situ testing methods,geomechanical properties under lunar extreme environments,base design and structural stability assessment,excavation and reinforcement techniques,and simulated Earth-based lava tube base.
基金supported by National Natural Science Foundation of China(Grant Nos.4203070 and 41977217)the Key Research&Development Program of Shaanxi Province(Grant No.2020ZDLSF06-03).
文摘Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the artificial land is essential,yet challenging.Here,we use an improved fiber-optic monitoring system for its subsurface multi-physical characterization.The system enables us to gather spatiotemporal distribution of various parameters,including strata deformation,temperature,and moisture.Yan’an New District was selected as a case study to conduct refined in-situ monitoring through a 77 m-deep borehole and a 30 m-long trench.Findings reveal that the ground settlement involves both the deformation of the filling loess and the underlying intact loess.Notably,the filling loess exhibits a stronger creep capability compared to underlying intact loess.The deformation along the profile is unevenly distributed,with a positive correlation with soil moisture.Water accumulation has been observed at the interface between the filling loess and the underlying intact loess,leading to a significant deformation.Moreover,the temperature and moisture in the filling loess have reached a new equilibrium state,with their depths influenced by atmospheric conditions measuring at 31 m and 26 m,respectively.The refined investigation allows us to identify critical layers that matter the sustainable development of newly created urban areas,and provide improved insights into the evolution mechanisms of land creation.
基金Supported by School-level Natural Science Project of Jiangxi University of Technology(232ZRYB02).
文摘The high-quality development of the construction industry fundamentally stems from the significant improvement of total factor productivity.Therefore,it is of crucial significance for promoting the development of the construction industry to a higher level by scientifically and accurately measuring the total factor productivity of the construction industry and deeply analyzing the influencing factors behind it.Based on a comprehensive consideration of research methods and influencing factors,this paper systematically reviews the existing relevant literature on total factor productivity in the construction industry,aiming to reveal the current research development trend in this field and point out potential problems.This effort aims to provide a solid theoretical foundation and valuable reference for further in-depth research,and jointly promote the continuous progress and development of total factor productivity research in the construction industry.
文摘The earth-rockfill dam is one of the primary dam types in the selection of high dams to be constructed in Western China, since it is characterized by favorable adaptability of the dam foundation; full utilization of local earth, rock, and building-excavated materials; low construction cost; and low cement consumption. Many major technical issues regarding earth-rockfill dams with a height of over 250 m were studied and solved successfully in the construction of the 261.5 m Nuozhadu earth core rockfill dam. This paper describes research achievements and basic conclusions; systematically summarizes the accumulated experiences from the construction of the Nuozhadu Dam and other high earth-rockfill dams; and discusses major technical issues, such as deformation control, seepage control, dam slope stability, safety and control of flood discharging, safety and quality control of dam construction, safety assessments, early warning, and other key technical difficulties. This study also provides a reference and technological support for the future construction of 300 m high earth-rockfill dams.
基金supported by the National Natural Science Foundation of China(52130801,U20A20312,52178271,and 52077213)the National Key Research and Development Program of China(2021YFF0500903)。
文摘Identifying workers’construction activities or behaviors can enable managers to better monitor labor efficiency and construction progress.However,current activity analysis methods for construction workers rely solely on manual observations and recordings,which consumes considerable time and has high labor costs.Researchers have focused on monitoring on-site construction activities of workers.However,when multiple workers are working together,current research cannot accu rately and automatically identify the construction activity.This research proposes a deep learning framework for the automated analysis of the construction activities of multiple workers.In this framework,multiple deep neural network models are designed and used to complete worker key point extraction,worker tracking,and worker construction activity analysis.The designed framework was tested at an actual construction site,and activity recognition for multiple workers was performed,indicating the feasibility of the framework for the automated monitoring of work efficiency.
基金supported by the National Natural Science Foundation of China(42241109)the Guoqiang Institute,Tsinghua University(2021GQG1001)the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘Lunar habitat construction is crucial for successful lunar exploration missions.Due to the limitations of transportation conditions,extensive global research has been conducted on lunar in situ material processing techniques in recent years.The aim of this paper is to provide a comprehensive review,precise classification,and quantitative evaluation of these approaches,focusing specifically on four main approaches:reaction solidification(RS),sintering/melting(SM),bonding solidification(BS),and confinement formation(CF).Eight key indicators have been identified for the construction of low-cost and highperformance systems to assess the feasibility of these methods:in situ material ratio,curing temperature,curing time,implementation conditions,compressive strength,tensile strength,curing dimensions,and environmental adaptability.The scoring thresholds are determined by comparing the construction requirements with the actual capabilities.Among the evaluated methods,regolith bagging has emerged as a promising option due to its high in situ material ratio,low time requirement,lack of hightemperature requirements,and minimal shortcomings,with only the compressive strength falling below the neutral score.The compressive strength still maintains a value of 2–3 MPa.The proposed construction scheme utilizing regolith bags offers numerous advantages,including rapid and large-scale construction,ensured tensile strength,and reduced reliance on equipment and energy.In this study,guidelines for evaluating regolith solidification techniques are provided,and directions for improvement are offered.The proposed lunar habitat design based on regolith bags is a practical reference for future research.
基金supported by National Natural Science Foundation of China(No.42172319)the Fundamental Research Funds for the Central Universities(No.2023ZKPYLJ01)。
文摘The development and utilization of lunar resources are entering a critical stage.Immediate focus is needed on key technologies for in-situ resource utilization(ISRU)and lunar base construction.This paper comparatively analyzes the basic characteristics of lunar regolith samples returned from Chang'e-5(CE-5),Apollo,and Luna missions,focusing on their physical,mechanical,mineral,chemical,and morphological parameters.Given the limited availability of lunar regolith,more than 50 lunar regolith simulants are summarized.The differences between lunar regolith and simulants concerning these parameters are discussed.To facilitate the construction of lunar bases,this article summarizes the advancements in research on construction materials derived from lunar regolith simulants.Based on statistical results,lunar regolith simulant-based composites are classified into 5 types by their strengthening and toughening mechanisms,and a comprehensive analysis of molding methods,preparation conditions,and mechanical properties is conducted.Furthermore,the potential lunar base construction forms are reviewed,and the adaptability of lunar regolith simulant-based composites and lunar base construction methods are proposed.The key demands of lunar bases constructed with lunar regolith-based composites are discussed,including energy demand,in-situ buildability,service performance,and structural availability.This progress contributes to providing essential material and methodological support for future lunar construction.
基金National Natural Science Foundation of China under Grand No.51808190the Central Government Guides Local Science and Technology Development Fund Projects under Grand No.XZ202301YD0019C+2 种基金the Foundation of Key Laboratory of Soft Soils and Geoenvironmental Engineering(Zhejiang University)Ministry of Education under Grand No.2022P04the Central University Basic Research Fund of China under Grand No.B220202017。
文摘This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into finite segments in the vertical direction and the Voigt model is applied to simulate the vertical support of the surrounding soil acting on the pile segment.The surrounding soil is divided into finite ring-shaped zones in the radial direction to consider the construction disturbance.Then,the shear complex stiffness at the pile-soil interface is derived by solving the dynamic equilibrium equation for the soil from the outermost to innermost zone.The displacement impedance at the top of an arbitrary pile segment is obtained by solving the dynamic equilibrium equation for the pile and is combined with the vertical support of the surrounding soil to derive the displacement impedance at the bottom of the upper adjacent segment.Further,the displacement impedance at the pile head is obtained based on the impedance function transfer technique.Finally,the reliability of the proposed solution is verified,followed by a sensitivity analysis concerning the coupling effect of the pile parameters,construction disturbance and the vertical support of the surrounding soil on the displacement impedance of the pile.
基金supported by two projects initialed China Geological Survey: “Evaluation on Soil and Water Quality and Geological Survey in Xiong’an New Area (DD20189122)” and “Monitoring and Evaluation on Carrying Capacity of Resource and Environment in BeijingTianjin-Hebei Coordinated Development Zone and Xiong’an New Area (DD20221727)”
文摘China established Xiong’an New Area in Hebei Province in 2017,which is planned to accommodate about 5 million people,aiming to relieve Beijing City of the functions non-essential to its role as China’s capital and to expedite the coordinated development of the Beijing-Tianjin-Hebei region.From 2017 to 2021,the China Geological Survey(CGS)took the lead in multi-factor urban geological surveys involving space,resources,environments,and disasters according to the general requirements of“global vision,international standards,distinctive Chinese features,and future-oriented goals”in Xiong’an New Area,identifying the engineering geologic conditions and geologic environmental challenges of this area.The achievements also include a 3D engineering geological structure model for the whole area,along with“one city proper and five clusters”,insights into the ecology and the background endowment of natural resources like land,geothermal resources,groundwater,and wetland of the area before engineering construction,a comprehensive monitoring network of resources and environments in the area,and the“Transparent Xiong’an”geological information platform that is open,shared,dynamically updated,and three-dimensionally visualized.China’s geologists and urban geology have played a significant role in the urban planning and construction of Xiong’an New Area,providing whole-process geological solutions for urban planning,construction,operation and management.The future urban construction of Xiong’an New Area will necessitate the theoretical and technical support of earth system science(ESS)from various aspects,and the purpose is to enhance the resilience of the new type of city and to provide support for the green,low-carbon,and sustainable development of this area.
文摘Automatic control technology is the basis of road robot improvement,according to the characteristics of construction equipment and functions,the research will be input type perception from positioning acquisition,real-world monitoring,the process will use RTK-GNSS positional perception technology,by projecting the left side of the earth from Gauss-Krueger projection method,and then carry out the Cartesian conversion based on the characteristics of drawing;steering control system is the core of the electric drive unmanned module,on the basis of the analysis of the composition of the steering system of unmanned engineering vehicles,the steering system key components such as direction,torque sensor,drive motor and other models are established,the joint simulation model of unmanned engineering vehicles is established,the steering controller is designed using the PID method,the simulation results show that the control method can meet the construction path demand for automatic steering.The path planning will first formulate the construction area with preset values and realize the steering angle correction during driving by PID algorithm,and never realize the construction-based path planning,and the results show that the method can control the straight path within the error of 10 cm and the curve error within 20 cm.With the collaboration of various modules,the automatic construction simulation results of this robot show that the design path and control method is effective.
基金Supported by Natural Science Foundation of Hunan Province(2023JJ50083,2023JJ50084)Excellent Youth Project of Hunan Provincial Department of Education(22B0844)Hunan Provincial Graduate Research Innovation Project(CX20231274)。
文摘Transcription factor NAC102 plays an important role in the abiotic stress responses of plants.In this study,the promoter sequence of 3000 bp located in the upstream of the BjNAC102 gene was cloned from Brassica juncea‘Sichuan Yellow Seed’by using the homologous cloning method.The expression vector of the GUS gene driven by the BjNAC102 promoter was constructed by seamless cloning technology.The results showed that the sequence of the promoter of the BjNAC102 gene contained many cis-acting elements involved in light responsiveness,gibberellinresponsive element,and auxin-responsive element.It was speculated that BjNAC102 played an important role in the abiotic stress response in Brassica juncea.The expression vector of the promoter of the BjNAC102 gene was constructed,which layed a foundation for further studies of the expression pattern of the BjNAC102 gene in Brassica juncea.
基金Supported by School-level Natural Science Project of Jiangxi University of Technology(232ZRYB02).
文摘Green and low-carbon development of construction industry is one of the important ways to achieve the"dual carbon"goal in China.This study first measured the carbon emissions of the construction industry in 30 provinces in China,and then used the Dagum Gini coefficient and its decomposition method to explore the regional differences and sources of carbon emissions of the construction industry in China.The results show that the carbon emissions of construction industry in China generally show an upward trend,and there are significant differences in carbon emissions of construction industry among provinces,and the main source of regional differences is inter-regional differences.However,the contribution rate of inter-regional differences showed a significant downward trend,while the contribution rate of hyperbolic density increased day by day,and the contribution rate of intra-regional differences increased slightly.The results of this study will provide a reference for China to formulate more reasonable carbon emission reduction targets and differentiation strategies for the construction industry.
基金Sponsored by Germplasm Collection and Conservation Project for the Forest and Grass Germplasm Resources in Anhui Province in 2024(hxkt2024111)Science and Technology Plan Project of Huangshan(2022KN-02)+1 种基金Humanities and Social Sciences Research Project of Anhui Higher Education Institutions(SKHS2019B07)Key School-level Project of Huangshan University(2022xkjzd004).
文摘The continuous progress of urbanization has driven the continuous development and innovation of landscape planning and design.Focused on the important design method of modern construction art,this study analyzed its concepts and characteristics,and made deep exploration to its application in landscape planning and design.The results indicated that modern construction art had a significant impact on landscape spatial planning and layout,spatial design forms,and spatial ornaments.The use of modern construction art concepts could make landscape design more scientific,artistic,and humane,creating higher quality leisure and entertainment venues for audiences.
基金Supported by Natural Science Foundation of Hainan Province(721QN0938).
文摘Accelerating the transformation of agricultural scientific and technological achievements is a key link in implementing innovation-driven development strategy and rural revitalization strategy,and improving development quality and core competitiveness.How to build a scientific and systematic transformation system of scientific and technological achievements and improve the overall management level of scientific and technological achievements transformation of agricultural scientific research institutes is one of the key tasks to measure how a scientific research institute supports industry and serves society.Taking the Chinese Academy of Tropical Agricultural Sciences as an example,this paper explores the construction and practice of its scientific and technological achievements transformation system since the 13 th Five-Year Plan period.By arranging the current situation of resource elements for the transformation of scientific and technological achievements,analyzing the progress of the construction of the scientific and technological achievements transformation system,summarizing the practical results of the scientific and technological achievements transformation system,this paper puts forward 10 strategies and measures(implementing key projects for the transformation and application of scientific and technological achievements;striving to promote the transformation and application of on-duty scientific and technological achievements;accelerating the development and utilization of advantageous and characteristic resources;strengthening the use and protection of intellectual property rights;actively expanding cooperation activities between government,industry and research;increasing special financial support for the transformation of scientific and technological achievements;innovating state-owned asset management to accelerate scientific and technological development;piloting equity incentives to expand scientific and technological development channels to increase income;striving to create a relaxed environment for the transformation of scientific and technological achievements,effectively create scientific and technological value,enhance the development strength of the institute,and promote high-quality industrial development)in order to provide a useful reference for the transformation of scientific and technological achievements of agricultural research institutes.
基金supported by the Hebei Social Science Foundation Project(Grant No.HB20YJ018)2023 Hebei Province Social Science Development Research Project(Grant No.20230103005)Education Department of Hebei Province Graduate Student Innovation Ability Training Funding Project(Grant No.CXZZSS2023130).
文摘In order to assess the environmental risks caused by carbon emissions from the construction industry in Hebei Province of China,an environmental risk assessment model based on forest carbon sink threshold was constructed to evaluate the carbon emission risks of the construction industry in Hebei Province,China from 2005 to 2020.The results are shown as follows:(1)The overall carbon emissions of the construction industry in Hebei Province of China showed an inverted"V"-shaped evolution trend during the past 16 years.Tangshan and Shijiazhuang maintained high carbon emissions,while Langfang,Hengshui and Baoding saw rapid increases in carbon emissions.(2)The environmental safety threshold of carbon emission from the construction industry in Hebei Province,China,has been continuously improved,and the provincial environmental safety threshold is between 9475080-23144760 tons;The environmental safety threshold was the highest in Baoding and Langfang,and the lowest in Xingtai.(3)In the past 16 years,the carbon emission risk of the construction industry in Hebei Province of China has been in a state of extremely serious risk,and the risk index generally presents an inverted"V"type trend.(4)The carbon emission risk of Hebei city in China presents a spatial pattern of"high in the south and low in the north",which goes through two stages:risk increase period and risk reduction period.