Structure-soil interface friction characteristics is of importance to investigate the interaction between engineering structures and soils,especially for offshore structures.The interface friction behavior between mar...Structure-soil interface friction characteristics is of importance to investigate the interaction between engineering structures and soils,especially for offshore structures.The interface friction behavior between marine clay and structural materials with different roughness was studied in this paper by using 3D optical scanning tests,a modified direct shear device and numerical simulation.Relationships between the surface roughness of structures,water content and interface friction angle were presented by model tests.The increase of water contents decreased the interface friction angles.For interfaces with different roughness,the interface friction angles will be smaller than that of the soil when the water content exceeds a certain value.The roughness of the interface and the water content of the soil are mutually coupled to influence the coefficient of friction(COF).This paper proposed a Finite Element Method(FEM)to simulate the interface direct shear tests of structures with different roughness.The surface models with different roughness are established based on the structure data obtained by 3D scanning.The Coupled Eulerian-Lagrangian(CEL)approach was employed to analyse soils sheared by irregular surfaces.The interface behavior for interfaces with different roughness under cyclic shear stresses was analyzed by FEM.展开更多
The rapid development and popularization of Internet technology has provided important support for the informatization reform of various industries.University books and materials have the characteristics of large quan...The rapid development and popularization of Internet technology has provided important support for the informatization reform of various industries.University books and materials have the characteristics of large quantities and difficult storage and management.Its digital storage and management platform construction can effectively realize the digital storage and real-time retrieval of books and materials,and help students and teachers to find and use books and materials more quickly.Especially in recent years,with the update of intelligent platforms and other technologies,the resource-sharing platform of university books and materials can realize more convenient book information retrieval without the limitation of time and space.This paper mainly explores the optimization path and platform construction scheme of university libraries and information management under the background of the Internet,hoping to provide some theoretical references for university library managers.展开更多
Corrosion studies are important due to the enormous cost involved in the replacement of materials in all kinds of applications. The outdoor study on corrosion behavior of aluminum sheet, chequered aluminum plate and z...Corrosion studies are important due to the enormous cost involved in the replacement of materials in all kinds of applications. The outdoor study on corrosion behavior of aluminum sheet, chequered aluminum plate and zinc alloys roofing sheet commonly used as construction material within a highly industrial settlement were examined using the gravimetric technique. The outdoor corrosion of these alloys at different sites was observed via its exposure to atmospheric conditions, monitored and recorded for 12 months at an interval of 2 months. Results depicted a process spanning the initial and intermediate stages of corrosion. The samples of construction materials at Bonny island showed substantial weight losses and rate of corrosion which varied largely on percentage of atmospheric humidity, salt precipitations, industrial aerosols and corrosive gases present at the exposure site as well as the nature of the material and the presence of protective coating formed during corrosion process. The rapid rate of deterioration of these materials causes severe economic importance on the indigenes’ activities including the oil and gas industries and other construction companies on the island. Thus, there is urgent need for research concerned with methods to control or prevent excessive deterioration of metals in Bonny Island.展开更多
In order to promote the development of road traffic in our country,it is necessary to strengthen the research on municipal road construction technology,constantly innovate construction technology and construction tech...In order to promote the development of road traffic in our country,it is necessary to strengthen the research on municipal road construction technology,constantly innovate construction technology and construction technique,and then effectively ensure the rapid development of urban traffic.This paper mainly elaborates on asphalt road surface regeneration technology,modified asphalt concrete,concrete road surface anti-cracking technology,three-dimensional printing technology,composite material road surface,polymer composite materials,etc.,to ensure the development of urban transportation and the quality of municipal road projects.展开更多
Lunar habitat construction is crucial for successful lunar exploration missions.Due to the limitations of transportation conditions,extensive global research has been conducted on lunar in situ material processing tec...Lunar habitat construction is crucial for successful lunar exploration missions.Due to the limitations of transportation conditions,extensive global research has been conducted on lunar in situ material processing techniques in recent years.The aim of this paper is to provide a comprehensive review,precise classification,and quantitative evaluation of these approaches,focusing specifically on four main approaches:reaction solidification(RS),sintering/melting(SM),bonding solidification(BS),and confinement formation(CF).Eight key indicators have been identified for the construction of low-cost and highperformance systems to assess the feasibility of these methods:in situ material ratio,curing temperature,curing time,implementation conditions,compressive strength,tensile strength,curing dimensions,and environmental adaptability.The scoring thresholds are determined by comparing the construction requirements with the actual capabilities.Among the evaluated methods,regolith bagging has emerged as a promising option due to its high in situ material ratio,low time requirement,lack of hightemperature requirements,and minimal shortcomings,with only the compressive strength falling below the neutral score.The compressive strength still maintains a value of 2–3 MPa.The proposed construction scheme utilizing regolith bags offers numerous advantages,including rapid and large-scale construction,ensured tensile strength,and reduced reliance on equipment and energy.In this study,guidelines for evaluating regolith solidification techniques are provided,and directions for improvement are offered.The proposed lunar habitat design based on regolith bags is a practical reference for future research.展开更多
Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic t...Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated.展开更多
Construction Industry operates relying on various key economic indicators.One of these indicators is material prices.On the other hand,cost is a key concern in all operations of the construction industry.In the uncert...Construction Industry operates relying on various key economic indicators.One of these indicators is material prices.On the other hand,cost is a key concern in all operations of the construction industry.In the uncertain conditions,reliable cost forecasts become an important source of information.Material cost is one of the key components of the overall cost of construction.In addition,cost overrun is a common problem in the construction industry,where nine out of ten construction projects face cost overrun.In order to carry out a successful cost management strategy and prevent cost overruns,it is very important to find reliable methods for the estimation of construction material prices.Material prices have a time dependent nature.In order to increase the foreseeability of the costs of construction materials,this study focuses on estimation of construction material indices through time series analysis.Two different types of analysis are implemented for estimation of the future values of construction material indices.The first method implemented was Autoregressive Integrated Moving Average(ARIMA),which is known to be successful in estimation of time series having a linear nature.The second method implementedwas Non-LinearAutoregressive Neural Network(NARNET)which is known to be successful in modeling and estimating of series with non-linear components.The results have shown that depending on the nature of the series,both these methods can successfully and accurately estimate the future values of the indices.In addition,we found out that Optimal NARNET architectures which provide better accuracy in estimation of the series can be identified/discovered as result of grid search on NARNET hyperparameters.展开更多
The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development...The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development of the construction strategies for achieving zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) micro/nanostructures from energetic molecules is introduced. Also, an overview of the unique properties induced by micro/nanostructures and size effects is provided. Special emphasis is focused on the size-dependent properties that are different from those of the conventional micro-sized energetic materials, such as thermal decomposition, sensitivity, combustion and detonation, and compaction behaviors. A conclusion and our view of the future development of micro/nano-energetic materials and devices are given.展开更多
Conventional electron and optical microscopy techniques require the sample to be sectioned, polished or etched to expose the internal surfaces for imaging. However, such sample preparation techniques have traditionall...Conventional electron and optical microscopy techniques require the sample to be sectioned, polished or etched to expose the internal surfaces for imaging. However, such sample preparation techniques have traditionally prevented the observation of the same sample over time, under realistic three-dimensional geometries and in an environment representative of real-world operating conditions. X-ray microscopy (XRM) is a rapidly emerging technique that enables non-destructive evaluation of buried structures within hard to soft materials in 3D, requiring little to no sample preparation. Furthermore in situ and 4D quantification of microstructural evolution under controlled environment as a function of time, temperature, chemistry or stress can be done repeatable on the same sample, using practical specimen sizes ranging from tens of microns to several cm diameter, with achievable imaging resolution from submicron to 50 nm. Many of these studies were reported using XRM in synchrotron beamlines. These include crack propagation on composite and construction materials; corrosion studies; microstructural changes during the setting of cement; flow studies within porous media to mention but a few.展开更多
Geotechnical tests conducted on clayey materials of Missole II, Douala sub-basin of Cameroon showed that these materials present: fines particles (55 to 78 wt.%), sand (22 to 44 wt.%), and plasticity index of 13.8 to ...Geotechnical tests conducted on clayey materials of Missole II, Douala sub-basin of Cameroon showed that these materials present: fines particles (55 to 78 wt.%), sand (22 to 44 wt.%), and plasticity index of 13.8 to 21.6%. The X-ray diffraction (XRD) and the chemical analysis revealed a kaolinite amount of 46 to 56 wt.%, 19 to 27 wt.% of illite, 12 to 19 wt.% of quartz, 3 to 5 wt.% of goethite, 2 to 5 wt.% of hematite, 1.5 to 5 wt.% of anatase, 2 to 3 wt.% of feldspar-K with 52.87 to 63.11 wt.% of SiO2, 18.08 to 24.31 wt.% of Al2O3, 3.28 to 11.45 wt.% of Fe2O3 and a small content of bases (<2 wt.%). The results of geotechnical tests combined to those of the XRD and the chemical analysis showed that the Missole II clayey materials are suitable for the manufacture of bricks, tiles and sandstones.展开更多
Prices increase of building materials is a common trend in both developed and developing countries. The prices increase of building materials results in high cost of housing.The aim of this study is to identify the ma...Prices increase of building materials is a common trend in both developed and developing countries. The prices increase of building materials results in high cost of housing.The aim of this study is to identify the major determinants of prices increase of building materials on Ghanaian construction market, and also to assess the relationship between the independent variables of the prices increase. A five-point Likert scale was used for the study;from strongly disagree (1) to strongly agree (5). The variables in the questionnaire were ranked based on the response of the participants of the study using Mean Response Analysis (MRA) statistics. Spearman correlation matrix was used to determine the relationship between the variables of prices increase of building materials. Crude oil prices, energy cost, local taxes and charges, cost of fuel and power supply, high running cost, high prices of raw materials, cost of transportation and the high cost of labour were found to be the major determinants of prices increase of building materials on Ghanaian construction market. The study further found multicollinearity relationship among variables of prices increase of building materials, of which the highest correlation coefficient was found between fast-growing demand due to high global economic growth and over-dependence on imported building materials. The study recommends that further research should be carried out to determine the control measures of increase prices of building materials in Ghana.展开更多
1 Scope This standard specifies the definition, classifica- tion, technical requirements, test methods, quality ap- praisal procedure, packing, marking, transportation, stroage and quality certificate of carbon rammi...1 Scope This standard specifies the definition, classifica- tion, technical requirements, test methods, quality ap- praisal procedure, packing, marking, transportation, stroage and quality certificate of carbon ramming mate- rials for blast furnace construction. This standard is applicable to carbon ramming materials for construction in leveling layer of blast furnace bottom, ramming layer upper or lower the cen- tral line of water cooling pipes, joints between carbon bricks, or joints between carbon bricks and cooling equipment.展开更多
The work presents technologies of materials,energy and water management that can be used for sustainable buildings,reducing costs and environmental impacts.The aim was to encourage the reduction of energy consumption,...The work presents technologies of materials,energy and water management that can be used for sustainable buildings,reducing costs and environmental impacts.The aim was to encourage the reduction of energy consumption,adequate water management and more sustainable material choices in new or existing buildings.For this,a diagnosis of existing technologies and alternatives was carried out in the first stage of the work.The second stage consisted of analyzing among the technologies and alternatives diagnosed from the methodology which can be applied in a fictitious case study of housing,its implementation and maintenance and viability analyzing,finally,environmental indicators,social and economic.The results showed that the best evaluated technologies/alternatives were in Energy:ventilation and natural light;in Water Management:double-action sanitary basin,flow restrictors,aerators with constant flow,and minicistern systems;and in Materials:bamboo,wood,soil-cement brick,earth,steel frame and wood frame,aggregate with ash from rice husks,aggregate with ash from sugarcane bagasse,glass,phase change materials,aggregate with residues of construction and demolition,Portland cement and cement with blast furnace slag;which can be used in the civil construction sector,and provide socio-environmental and economic benefits,encouraging new studies and its use for public/private buildings,aid in the elaboration of public policies to reduce costs and improve the quality of buildings.展开更多
This article summarizes the different local construction materials observed in two regions of Cameroon (Adamawa and North-West). These raw materials were mapped and evaluated using various methods of investigation (sp...This article summarizes the different local construction materials observed in two regions of Cameroon (Adamawa and North-West). These raw materials were mapped and evaluated using various methods of investigation (spatial distribution, estimation of reserves, development of a database compatible with geo-referenced maps). The results obtained show three types of local construction materials (vegetal, pedological and geological) with quantitative estimation or distribution. Vegetal local materials include herbaceous savanna with strong dominance of straw in Adamawa region than the North West region. Pedological local construction materials include lateritic soils (ferruginous or clayey), harplan, sandy clay and sandy clay soil while geological local construction materials include volcanic, plutonic and metamorphic rocks. Many sites of these geological materials are suitable for the rock quarry plant. Adamawa region also contains sedimentary rocks constituted by metamorphic conglomerate and sandstones. Two main types of residential homes are constructed with these local construction materials in these regions of Cameroon. These include huts and houses.展开更多
The manufacturing of ordinary Portland cement is an energy-intensive process that results in pollution and CO2 emissions,among other issues.There is a need for an environmentally friendly green concrete substitute.Was...The manufacturing of ordinary Portland cement is an energy-intensive process that results in pollution and CO2 emissions,among other issues.There is a need for an environmentally friendly green concrete substitute.Waste products from a variety of sectors can be recycled and used as a green concrete substitute.This decreases the environmental effects of concrete manufacturing as well as energy consumption.The use of solid waste materials for green building is extremely important now and in the future.Green concrete is also in its infancy in terms of manufacturing and application.Academics must intervene by encouraging business implementation.The aim of this review paper is to raise awareness about the importance of repurposing recycled materials and to highlight new technologies for producing green,sustainable concrete.展开更多
Sixteen controlled low-strength material( CLSM)mixtures with various cement-to-sand( C/Sa) ratios and water-to-solid( W/So) ratios were prepared using recycled fine aggregate from urban red brick based construction wa...Sixteen controlled low-strength material( CLSM)mixtures with various cement-to-sand( C/Sa) ratios and water-to-solid( W/So) ratios were prepared using recycled fine aggregate from urban red brick based construction waste.The fluidity and bleeding of the fresh CLSM mixtures were measured via the modified test methods, and the hardened CLSM mixtures were then molded to evaluate their compressive strength and durability. The results showthat the fluidity of the fresh CLSM mixtures is 105 to 227 mm with the corresponding bleeding rate of 3. 7% to 15. 5%, which increases with the increase in fluidity. After aging for 28 d,the compressive strength of the hardened CLSM mixtures reaches 1. 15 to 13. 96 M Pa, and their strength can be further enhanced with longer curing ages. Additionally, the strength increases with the increase of the C/Sa ratio, and decreases with the increase of the W/So ratio under the same curing age. Based on the obtained compressive strength, a fitting model for accurately predicting the compressive strength of the CLSM mixtures was established, which takes into account the above two independent variables( C/Sa and W/So ratios).M oreover, the durability of the hardened CLSM mixtures is enhanced for samples with higher C/Sa ratios.展开更多
To improve the quality of the Hong Kong–Zhuhai–Macao Bridge paving project,a new paving layer material,Guss-mastic asphalt(GMA),was proposed in this paper by combining the advantages of two types of cast asphalt mix...To improve the quality of the Hong Kong–Zhuhai–Macao Bridge paving project,a new paving layer material,Guss-mastic asphalt(GMA),was proposed in this paper by combining the advantages of two types of cast asphalt mixtures:mastic asphalt(MA)and Guss asphalt(GA).Based on the characteristics of GMA,to simulate its actual production process,this study developed a small-simulated cooker mixing equipment.Moreover,the flow degree,60C dynamic stability,and impact toughness were proposed to be used to evaluate the construction and ease,high temperature stability,and fatigue resistance of GMA cast asphalt mixtures,respectively.Moreover,the quality control standards for GMA paving materials by indoor tests,field trial mix GMA material performance tests,and accelerated loading tests were finalized.The study showed that the developed simulated cooker yielded consistent mixing results in the same working environment as the engineering cooker device.Increasing the coarse aggregate incorporation rate,coarsening the mastic epure(ME)gradation composition,and using a smaller oil to stone ratio can reduce the flowability of the GMA materials to varying degrees.The four-point bending fatigue life and impact toughness of the different GMA materials are correlated well.A mobility of<20 s,60C dynamic stability of 400–800 times/mm,15C impact toughness of400 N⋅mm,and cooker car mixing temperature control standard of 210C–230C form an appropriate control index system for the design and production of GMA cast asphalt mixtures.Simultaneously,accelerated loading tests verified the accuracy and reliability of the quality control index system that has been used in the GMA paving project of the Hong Kong–Zhuhai–Macao Bridge deck and has achieved good application results.展开更多
The new adhesive material for the construction joints of tunnel lining(named as SZC) was studied based on the structural characteristics of interfaces and the characteristic of bonding construction, and the performanc...The new adhesive material for the construction joints of tunnel lining(named as SZC) was studied based on the structural characteristics of interfaces and the characteristic of bonding construction, and the performance indexes were verified by tests. The experimental results show that the adhesive capability of interface is improved effectively by using SZC material, the properties, such as anti-freezing, erosion-resistance and anti-shrinkage are improved greatly as well as durability.展开更多
基金supported by a grant from the National Natural Science Foundations of China(No.52171282)supported by Taishan Scholars Program of Shandong Province,China(No.tsqn202306098)the Shandong Provincial Key Research and Development Plan,China(No.2021ZLGX04).
文摘Structure-soil interface friction characteristics is of importance to investigate the interaction between engineering structures and soils,especially for offshore structures.The interface friction behavior between marine clay and structural materials with different roughness was studied in this paper by using 3D optical scanning tests,a modified direct shear device and numerical simulation.Relationships between the surface roughness of structures,water content and interface friction angle were presented by model tests.The increase of water contents decreased the interface friction angles.For interfaces with different roughness,the interface friction angles will be smaller than that of the soil when the water content exceeds a certain value.The roughness of the interface and the water content of the soil are mutually coupled to influence the coefficient of friction(COF).This paper proposed a Finite Element Method(FEM)to simulate the interface direct shear tests of structures with different roughness.The surface models with different roughness are established based on the structure data obtained by 3D scanning.The Coupled Eulerian-Lagrangian(CEL)approach was employed to analyse soils sheared by irregular surfaces.The interface behavior for interfaces with different roughness under cyclic shear stresses was analyzed by FEM.
文摘The rapid development and popularization of Internet technology has provided important support for the informatization reform of various industries.University books and materials have the characteristics of large quantities and difficult storage and management.Its digital storage and management platform construction can effectively realize the digital storage and real-time retrieval of books and materials,and help students and teachers to find and use books and materials more quickly.Especially in recent years,with the update of intelligent platforms and other technologies,the resource-sharing platform of university books and materials can realize more convenient book information retrieval without the limitation of time and space.This paper mainly explores the optimization path and platform construction scheme of university libraries and information management under the background of the Internet,hoping to provide some theoretical references for university library managers.
文摘Corrosion studies are important due to the enormous cost involved in the replacement of materials in all kinds of applications. The outdoor study on corrosion behavior of aluminum sheet, chequered aluminum plate and zinc alloys roofing sheet commonly used as construction material within a highly industrial settlement were examined using the gravimetric technique. The outdoor corrosion of these alloys at different sites was observed via its exposure to atmospheric conditions, monitored and recorded for 12 months at an interval of 2 months. Results depicted a process spanning the initial and intermediate stages of corrosion. The samples of construction materials at Bonny island showed substantial weight losses and rate of corrosion which varied largely on percentage of atmospheric humidity, salt precipitations, industrial aerosols and corrosive gases present at the exposure site as well as the nature of the material and the presence of protective coating formed during corrosion process. The rapid rate of deterioration of these materials causes severe economic importance on the indigenes’ activities including the oil and gas industries and other construction companies on the island. Thus, there is urgent need for research concerned with methods to control or prevent excessive deterioration of metals in Bonny Island.
文摘In order to promote the development of road traffic in our country,it is necessary to strengthen the research on municipal road construction technology,constantly innovate construction technology and construction technique,and then effectively ensure the rapid development of urban traffic.This paper mainly elaborates on asphalt road surface regeneration technology,modified asphalt concrete,concrete road surface anti-cracking technology,three-dimensional printing technology,composite material road surface,polymer composite materials,etc.,to ensure the development of urban transportation and the quality of municipal road projects.
基金supported by the National Natural Science Foundation of China(42241109)the Guoqiang Institute,Tsinghua University(2021GQG1001)the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘Lunar habitat construction is crucial for successful lunar exploration missions.Due to the limitations of transportation conditions,extensive global research has been conducted on lunar in situ material processing techniques in recent years.The aim of this paper is to provide a comprehensive review,precise classification,and quantitative evaluation of these approaches,focusing specifically on four main approaches:reaction solidification(RS),sintering/melting(SM),bonding solidification(BS),and confinement formation(CF).Eight key indicators have been identified for the construction of low-cost and highperformance systems to assess the feasibility of these methods:in situ material ratio,curing temperature,curing time,implementation conditions,compressive strength,tensile strength,curing dimensions,and environmental adaptability.The scoring thresholds are determined by comparing the construction requirements with the actual capabilities.Among the evaluated methods,regolith bagging has emerged as a promising option due to its high in situ material ratio,low time requirement,lack of hightemperature requirements,and minimal shortcomings,with only the compressive strength falling below the neutral score.The compressive strength still maintains a value of 2–3 MPa.The proposed construction scheme utilizing regolith bags offers numerous advantages,including rapid and large-scale construction,ensured tensile strength,and reduced reliance on equipment and energy.In this study,guidelines for evaluating regolith solidification techniques are provided,and directions for improvement are offered.The proposed lunar habitat design based on regolith bags is a practical reference for future research.
文摘Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated.
基金supported by the Energy Cloud R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(2019M3F2A1073164)MSGSU BAP(2021-25).
文摘Construction Industry operates relying on various key economic indicators.One of these indicators is material prices.On the other hand,cost is a key concern in all operations of the construction industry.In the uncertain conditions,reliable cost forecasts become an important source of information.Material cost is one of the key components of the overall cost of construction.In addition,cost overrun is a common problem in the construction industry,where nine out of ten construction projects face cost overrun.In order to carry out a successful cost management strategy and prevent cost overruns,it is very important to find reliable methods for the estimation of construction material prices.Material prices have a time dependent nature.In order to increase the foreseeability of the costs of construction materials,this study focuses on estimation of construction material indices through time series analysis.Two different types of analysis are implemented for estimation of the future values of construction material indices.The first method implemented was Autoregressive Integrated Moving Average(ARIMA),which is known to be successful in estimation of time series having a linear nature.The second method implementedwas Non-LinearAutoregressive Neural Network(NARNET)which is known to be successful in modeling and estimating of series with non-linear components.The results have shown that depending on the nature of the series,both these methods can successfully and accurately estimate the future values of the indices.In addition,we found out that Optimal NARNET architectures which provide better accuracy in estimation of the series can be identified/discovered as result of grid search on NARNET hyperparameters.
基金Sponsored by National Natural Science Foundation of China (21231002,21276026,21271023,21173021,91022006,11202193,11172276,and 11072225)the 111 Project ( B07012)+1 种基金the Program of Cooperation of the Beijing Education Commission ( 20091739006)Specialized Research Fund for the Doctoral Program of Higher Education ( 20101101110031)
文摘The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development of the construction strategies for achieving zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) micro/nanostructures from energetic molecules is introduced. Also, an overview of the unique properties induced by micro/nanostructures and size effects is provided. Special emphasis is focused on the size-dependent properties that are different from those of the conventional micro-sized energetic materials, such as thermal decomposition, sensitivity, combustion and detonation, and compaction behaviors. A conclusion and our view of the future development of micro/nano-energetic materials and devices are given.
文摘Conventional electron and optical microscopy techniques require the sample to be sectioned, polished or etched to expose the internal surfaces for imaging. However, such sample preparation techniques have traditionally prevented the observation of the same sample over time, under realistic three-dimensional geometries and in an environment representative of real-world operating conditions. X-ray microscopy (XRM) is a rapidly emerging technique that enables non-destructive evaluation of buried structures within hard to soft materials in 3D, requiring little to no sample preparation. Furthermore in situ and 4D quantification of microstructural evolution under controlled environment as a function of time, temperature, chemistry or stress can be done repeatable on the same sample, using practical specimen sizes ranging from tens of microns to several cm diameter, with achievable imaging resolution from submicron to 50 nm. Many of these studies were reported using XRM in synchrotron beamlines. These include crack propagation on composite and construction materials; corrosion studies; microstructural changes during the setting of cement; flow studies within porous media to mention but a few.
文摘Geotechnical tests conducted on clayey materials of Missole II, Douala sub-basin of Cameroon showed that these materials present: fines particles (55 to 78 wt.%), sand (22 to 44 wt.%), and plasticity index of 13.8 to 21.6%. The X-ray diffraction (XRD) and the chemical analysis revealed a kaolinite amount of 46 to 56 wt.%, 19 to 27 wt.% of illite, 12 to 19 wt.% of quartz, 3 to 5 wt.% of goethite, 2 to 5 wt.% of hematite, 1.5 to 5 wt.% of anatase, 2 to 3 wt.% of feldspar-K with 52.87 to 63.11 wt.% of SiO2, 18.08 to 24.31 wt.% of Al2O3, 3.28 to 11.45 wt.% of Fe2O3 and a small content of bases (<2 wt.%). The results of geotechnical tests combined to those of the XRD and the chemical analysis showed that the Missole II clayey materials are suitable for the manufacture of bricks, tiles and sandstones.
文摘Prices increase of building materials is a common trend in both developed and developing countries. The prices increase of building materials results in high cost of housing.The aim of this study is to identify the major determinants of prices increase of building materials on Ghanaian construction market, and also to assess the relationship between the independent variables of the prices increase. A five-point Likert scale was used for the study;from strongly disagree (1) to strongly agree (5). The variables in the questionnaire were ranked based on the response of the participants of the study using Mean Response Analysis (MRA) statistics. Spearman correlation matrix was used to determine the relationship between the variables of prices increase of building materials. Crude oil prices, energy cost, local taxes and charges, cost of fuel and power supply, high running cost, high prices of raw materials, cost of transportation and the high cost of labour were found to be the major determinants of prices increase of building materials on Ghanaian construction market. The study further found multicollinearity relationship among variables of prices increase of building materials, of which the highest correlation coefficient was found between fast-growing demand due to high global economic growth and over-dependence on imported building materials. The study recommends that further research should be carried out to determine the control measures of increase prices of building materials in Ghana.
文摘1 Scope This standard specifies the definition, classifica- tion, technical requirements, test methods, quality ap- praisal procedure, packing, marking, transportation, stroage and quality certificate of carbon ramming mate- rials for blast furnace construction. This standard is applicable to carbon ramming materials for construction in leveling layer of blast furnace bottom, ramming layer upper or lower the cen- tral line of water cooling pipes, joints between carbon bricks, or joints between carbon bricks and cooling equipment.
基金Thanks to the Laboratory and Research Group ACert—Audit,Certification and Environmental Management(CNPq-UNESP/UFSCar),São Paulo State University(UNESP),University of São Paulo(ESALQ/USP)in BrazilHigher Institute of Technology of the University of Algarve(UALG)and Higher Technical Institute of the University of Lisbon(ULisboa)in PortugalNational Council for Scientific and Technological Development—CNPq and São Paulo State Research Support Foundation—FAPESP-Brazil for supporting this work.
文摘The work presents technologies of materials,energy and water management that can be used for sustainable buildings,reducing costs and environmental impacts.The aim was to encourage the reduction of energy consumption,adequate water management and more sustainable material choices in new or existing buildings.For this,a diagnosis of existing technologies and alternatives was carried out in the first stage of the work.The second stage consisted of analyzing among the technologies and alternatives diagnosed from the methodology which can be applied in a fictitious case study of housing,its implementation and maintenance and viability analyzing,finally,environmental indicators,social and economic.The results showed that the best evaluated technologies/alternatives were in Energy:ventilation and natural light;in Water Management:double-action sanitary basin,flow restrictors,aerators with constant flow,and minicistern systems;and in Materials:bamboo,wood,soil-cement brick,earth,steel frame and wood frame,aggregate with ash from rice husks,aggregate with ash from sugarcane bagasse,glass,phase change materials,aggregate with residues of construction and demolition,Portland cement and cement with blast furnace slag;which can be used in the civil construction sector,and provide socio-environmental and economic benefits,encouraging new studies and its use for public/private buildings,aid in the elaboration of public policies to reduce costs and improve the quality of buildings.
文摘This article summarizes the different local construction materials observed in two regions of Cameroon (Adamawa and North-West). These raw materials were mapped and evaluated using various methods of investigation (spatial distribution, estimation of reserves, development of a database compatible with geo-referenced maps). The results obtained show three types of local construction materials (vegetal, pedological and geological) with quantitative estimation or distribution. Vegetal local materials include herbaceous savanna with strong dominance of straw in Adamawa region than the North West region. Pedological local construction materials include lateritic soils (ferruginous or clayey), harplan, sandy clay and sandy clay soil while geological local construction materials include volcanic, plutonic and metamorphic rocks. Many sites of these geological materials are suitable for the rock quarry plant. Adamawa region also contains sedimentary rocks constituted by metamorphic conglomerate and sandstones. Two main types of residential homes are constructed with these local construction materials in these regions of Cameroon. These include huts and houses.
文摘The manufacturing of ordinary Portland cement is an energy-intensive process that results in pollution and CO2 emissions,among other issues.There is a need for an environmentally friendly green concrete substitute.Waste products from a variety of sectors can be recycled and used as a green concrete substitute.This decreases the environmental effects of concrete manufacturing as well as energy consumption.The use of solid waste materials for green building is extremely important now and in the future.Green concrete is also in its infancy in terms of manufacturing and application.Academics must intervene by encouraging business implementation.The aim of this review paper is to raise awareness about the importance of repurposing recycled materials and to highlight new technologies for producing green,sustainable concrete.
基金The National Science and Technology Support Program of China(No.2014BAC07B03)the Science and Technology Project of Transportation Committee of Beijing Government(No.2016-LZJKJ-01-006)the National Natural Science Foundation of China(No.51278016)
文摘Sixteen controlled low-strength material( CLSM)mixtures with various cement-to-sand( C/Sa) ratios and water-to-solid( W/So) ratios were prepared using recycled fine aggregate from urban red brick based construction waste.The fluidity and bleeding of the fresh CLSM mixtures were measured via the modified test methods, and the hardened CLSM mixtures were then molded to evaluate their compressive strength and durability. The results showthat the fluidity of the fresh CLSM mixtures is 105 to 227 mm with the corresponding bleeding rate of 3. 7% to 15. 5%, which increases with the increase in fluidity. After aging for 28 d,the compressive strength of the hardened CLSM mixtures reaches 1. 15 to 13. 96 M Pa, and their strength can be further enhanced with longer curing ages. Additionally, the strength increases with the increase of the C/Sa ratio, and decreases with the increase of the W/So ratio under the same curing age. Based on the obtained compressive strength, a fitting model for accurately predicting the compressive strength of the CLSM mixtures was established, which takes into account the above two independent variables( C/Sa and W/So ratios).M oreover, the durability of the hardened CLSM mixtures is enhanced for samples with higher C/Sa ratios.
文摘To improve the quality of the Hong Kong–Zhuhai–Macao Bridge paving project,a new paving layer material,Guss-mastic asphalt(GMA),was proposed in this paper by combining the advantages of two types of cast asphalt mixtures:mastic asphalt(MA)and Guss asphalt(GA).Based on the characteristics of GMA,to simulate its actual production process,this study developed a small-simulated cooker mixing equipment.Moreover,the flow degree,60C dynamic stability,and impact toughness were proposed to be used to evaluate the construction and ease,high temperature stability,and fatigue resistance of GMA cast asphalt mixtures,respectively.Moreover,the quality control standards for GMA paving materials by indoor tests,field trial mix GMA material performance tests,and accelerated loading tests were finalized.The study showed that the developed simulated cooker yielded consistent mixing results in the same working environment as the engineering cooker device.Increasing the coarse aggregate incorporation rate,coarsening the mastic epure(ME)gradation composition,and using a smaller oil to stone ratio can reduce the flowability of the GMA materials to varying degrees.The four-point bending fatigue life and impact toughness of the different GMA materials are correlated well.A mobility of<20 s,60C dynamic stability of 400–800 times/mm,15C impact toughness of400 N⋅mm,and cooker car mixing temperature control standard of 210C–230C form an appropriate control index system for the design and production of GMA cast asphalt mixtures.Simultaneously,accelerated loading tests verified the accuracy and reliability of the quality control index system that has been used in the GMA paving project of the Hong Kong–Zhuhai–Macao Bridge deck and has achieved good application results.
文摘The new adhesive material for the construction joints of tunnel lining(named as SZC) was studied based on the structural characteristics of interfaces and the characteristic of bonding construction, and the performance indexes were verified by tests. The experimental results show that the adhesive capability of interface is improved effectively by using SZC material, the properties, such as anti-freezing, erosion-resistance and anti-shrinkage are improved greatly as well as durability.