Food safety has become a major concern for consumers, as well as a priority for regulatory authorities. Faced with the growing industrial and domestic use of food additives, many questions are being asked and concerns...Food safety has become a major concern for consumers, as well as a priority for regulatory authorities. Faced with the growing industrial and domestic use of food additives, many questions are being asked and concerns are being felt by consumers around the world. Consumer perception defines the acceptability or rejection of food products, and has an impact on consumption patterns and behavior. To assess the level of knowledge and perception of food additives, a pilot study was carried out on a sample of 200 people in Dakar and Saint-Louis. A questionnaire was used to assess the acceptance or rejection, use and impact of food additives by consumers in Senegal. The results revealed several aspects. On the whole, the people surveyed expressed great mistrust and even rejection of these substances added to food products. This consumer perception is shared throughout the world, as indicated in numerous surveys. It also emerges from this study that, although most consumers are aware of the existence of these additives and their uses in the home, they feel that the use of these substances in industrial production is too excessive. What’s more, consumers associate food additives with numerous pathologies such as cancer, diabetes, hypertension, stroke and even sexual impotence. For some of these indexed pathologies, scientific studies have reached the same conclusions, although controversy still persists. On the other hand, for some of the other adverse effects mentioned, no cause-and-effect relationship has been scientifically demonstrated. In these latter cases, it seems that negative communication, misinformation and misconceptions have a major influence on consumer perception of food additives.展开更多
With the vigorous development of consumer culture in today’s society,various types of food packaging also appear in front of consumers in different forms.There are very big differences in food packaging in terms of s...With the vigorous development of consumer culture in today’s society,various types of food packaging also appear in front of consumers in different forms.There are very big differences in food packaging in terms of shape,color,style and other aspects of information transmission,which have the most direct impact on the audience’s food consumption needs.Driven by the consumption-oriented society,food packaging has shown very obvious comprehensive characteristics,is significantly interdisciplinary,and has close connections with other disciplines.This article will analyze and sort out the impact of food packaging on consumer psychology from different perspectives.展开更多
As e-commerce continues to mature,the advantages of live streaming within the industry have become increasingly apparent,offering significant growth opportunities.Social e-commerce platforms,which are user-centered,in...As e-commerce continues to mature,the advantages of live streaming within the industry have become increasingly apparent,offering significant growth opportunities.Social e-commerce platforms,which are user-centered,integrate social networks with e-commerce by leveraging social interactions to drive product sales and enhance the overall consumer shopping experience.This type of e-commerce fosters engagement and promotes products by merging online communities with shopping behavior,creating a more interactive and dynamic marketplace.It not only retains the traditional e-commerce trading and marketing functions but also adds a social dimension,making live stream anchors crucial figures connecting consumers with products.These anchors can attract consumers with their appearance and charm,and use their expertise on live streaming platforms to guide consumers by recommending live content.They can also interact with their audiences and potentially influence them to purchase the recommended goods.It is evident that the attributes of anchors in live streaming rooms significantly impact consumers’online behavior.Therefore,researching how platform contextual factors regulate consumers’online behavior is of great practical significance.This study employs multilevel regression analysis to support its hypotheses using data.The findings indicate that contextual factors of the platform significantly influence online behavior,enhancing the positive relationship between user attachment and online activities.展开更多
Through reviewing and summarizing the existing research on consumer motivation,and combining the characteristics of human behavior and the objective needs of environmental protection,this paper analyzes and defines co...Through reviewing and summarizing the existing research on consumer motivation,and combining the characteristics of human behavior and the objective needs of environmental protection,this paper analyzes and defines consumers’purchase motivation.In the context of environmental protection,purchase motivation is divided into demand motivation,value recognition motivation,recognition motivation,and interest motivation.Their definitions are given in this paper,which provides a conceptual basis for further research on the influence of purchase motivation on consumer behavior in the context of environmental protection.展开更多
Currently,talent training in Chinese universities for landscape architecture is mainly divided into three directions:“landscape planning and design,”“landscape construction management,”and“landscape plant plantin...Currently,talent training in Chinese universities for landscape architecture is mainly divided into three directions:“landscape planning and design,”“landscape construction management,”and“landscape plant planting and maintenance.”However,with the background of the slowing urbanization process and the widespread demand for composite talents in society,it remains to be verified whether the traditional three major talent training directions in landscape architecture align with the job demands in the current construction market.Based on a survey and analysis of over 300 industry practitioners,this study found a clear trend of merging the three major employment directions into“landscape design and construction”and“landscape plant planting and maintenance.”This presents new requirements and directions for the skill training of landscape architecture majors in universities and provides insights into the alignment between talent training and employment demands in other industries.展开更多
To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitme...To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitment,source-network load collaboration,and control of the load demand response.After the constraint functions are linearized,the original problem is decomposed into the main problem and subproblem as a matrix using the strong dual method.The minimum-maximum of the original problem was continuously maximized using the iterative method,and the optimal solution was finally obtained.The constraint conditions expressed by the matrix may reduce the calculation time,and the upper and lower boundaries of the original problem may rapidly converge.The results of the example show that the injected nodes of the wind farms in the power grid should be selected appropriately;otherwise,it is easy to cause excessive accommodation of wind power at some nodes,leading to a surge in reserve costs and the load demand response is continuously optimized to reduce the inverse peak regulation characteristics of wind power.Thus,the most economical optimization scheme for the worst scenario of the output power of the generators is obtained,which proves the economy and reliability of the two-stage robust optimization method.展开更多
This paper examined consumers’experiences in and preferences for plant-based meat(PBM)food and their respective correlates,based on data from an online survey of 579 consumers in four major cities in China in early 2...This paper examined consumers’experiences in and preferences for plant-based meat(PBM)food and their respective correlates,based on data from an online survey of 579 consumers in four major cities in China in early 2021.We first described consumers’experiences in consuming and purchasing PBM food and their correlates,and then analyzed consumer preferences using hypothetical choice experiment.The experiment offered consumers various options to purchase burgers made from PBM or animal-based meat(ABM),combined with different countries of origin(COO),taste labels,and prices.Our data showed that respondents hold overall positive attitudes toward PBM food;85 and 82%of respondents reported experience in eating and purchasing PBM food,respectively.More than half of them ate PBM food because they wanted to try new food(58%),or were interested in healthy food(56%).Income,religion,and dietary restrictions were significantly correlated with consumers’experiences in PBM food consumption.Results from the Random Parameter Logit Model based on the hypothetical choice experiment data showed that 79%of respondents chose PBM burgers and were willing to pay an average of 88 CNY for a PBM burger.We also found that 99.8 and 83%of respondents are willing to buy burgers made in China and those with a taste label,with a willingness to pay(WTP)of 208 and 120 CNY,respectively.The heterogeneity test revealed that females and those with at least a bachelor’s degree,higher income,religious beliefs,and dietary restrictions are more likely to buy PBM burgers than their counterparts.展开更多
Bio-inspired computer modelling brings solutions fromthe living phenomena or biological systems to engineering domains.To overcome the obstruction problem of large-scale wind power consumption in Northwest China,this ...Bio-inspired computer modelling brings solutions fromthe living phenomena or biological systems to engineering domains.To overcome the obstruction problem of large-scale wind power consumption in Northwest China,this paper constructs a bio-inspired computer model.It is an optimal wind power consumption dispatching model of multi-time scale demand response that takes into account the involved high-energy load.First,the principle of wind power obstruction with the involvement of a high-energy load is examined in this work.In this step,highenergy load model with different regulation characteristics is established.Then,considering the multi-time scale characteristics of high-energy load and other demand-side resources response speed,a multi-time scale model of coordination optimization is built.An improved bio-inspired model incorporating particle swarm optimization is applied to minimize system operation and wind curtailment costs,as well as to find the most optimal energy configurationwithin the system.Lastly,we take an example of regional power grid in Gansu Province for simulation analysis.Results demonstrate that the suggested scheduling strategy can significantly enhance the wind power consumption level and minimize the system’s operational cost.展开更多
To investigate the apparent age of Chinese cosmetic consumers and its influencing factors.The subjects’skin conditions in all dimensions were collected using professional instruments and clinical expert assessment,su...To investigate the apparent age of Chinese cosmetic consumers and its influencing factors.The subjects’skin conditions in all dimensions were collected using professional instruments and clinical expert assessment,subjects’lifestyles,skin care and makeup habits were obtained through questionnaire.The apparent age of the subjects was obtained based on the visual perception of photos judged by observers and then averaged.The association between apparent age and skin characteristics,the association between the difference between apparent age and actual age and the subjects'lifestyle and its difference among cities were investigated.The results showed that apparent age had a high correlation with skin tone and severity of skin problems.The model of multiple regression analysis obtained a high resolution(R2=0.704).The use of skin care products may help to delay the apparent aging of the skin.The results of the study have some guiding significance for the development of anti-aging products and the evaluation of anti-aging efficacy and is informative for lifestyle choices to maintain youthfulness.展开更多
China,recognized as the world’s largest developing nation,displays considerably lower per capita consumption of dietary supplements in comparison to Asian nations such as Japan and South Korea.However,in recent years...China,recognized as the world’s largest developing nation,displays considerably lower per capita consumption of dietary supplements in comparison to Asian nations such as Japan and South Korea.However,in recent years,there has been a substantial surge in health consciousness among the Chinese populace.This trend is not confined to the middle-aged and elderly;even younger consumer demographics are exhibiting increased health awareness.Consequently,the target demographic for dietary supplements is transitioning towards a younger demographic.Within the Chinese dietary supplement industry,vitamin C has consistently held the largest market share,commanding a broad consumer base.This underscores the substantial role of vitamin C in the dietary supplement sector.In response to the trend towards a younger target demographic in the dietary supplement industry,adjustments are required to accommodate the preferences of this younger consumer group.This research,guided by Norman’s emotional design framework,executed a survey of over 200 respondents to investigate the preferences of Generation Z consumers in China.The research encompassed packaging,product forms,and brand imagery,corresponding to the emotional design’s visceral,behavioral,and reflective layers,with a primary focus on optimally meeting the emotional needs of Generation Z.The findings indicated that consumers favor products in capsule form,packaged in zip-lock.The predominant color scheme is clean white,accented by vibrant orange elements,while emphasizing the product’s health and scientific attributes.This study offers valuable insights for the continued evolution of the vitamin C dietary supplement market in China.展开更多
Purpose–Facing the diverse needs of large-scale customers,based on available railway service resources and service capabilities,this paper aims to research the design method of railway freight service portfolio,selec...Purpose–Facing the diverse needs of large-scale customers,based on available railway service resources and service capabilities,this paper aims to research the design method of railway freight service portfolio,select optimal service solutions and provide customers with comprehensive and customized freight services.Design/methodology/approach–Based on the characteristics of railway freight services throughout the entire process,the service system is decomposed into independent units of service functions,and a railway freight service combination model is constructed with the goal of minimizing response time,service cost and service time.A model solving algorithm based on adaptive genetic algorithm is proposed.Findings–Using the computational model,an empirical analysis was conducted on the entire process freight service plan for starch sold from Xi’an to Chengdu as an example.The results showed that the proposed optimization model and algorithm can effectively guide the design of freight plans and provide technical support for real-time response to customers’diversified entire process freight service needs.Originality/value–With the continuous optimization and upgrading of railway freight source structure,customer demands are becoming increasingly diverse and personalized.Studying and designing a reasonable railway freight service plan throughout the entire process is of great significance for timely response to customer needs,improving service efficiency and reducing design costs.展开更多
To address the issues of limited demand response data,low generalization of demand response potential evaluation,and poor demand response effect,the article proposes a demand response potential feature extraction and ...To address the issues of limited demand response data,low generalization of demand response potential evaluation,and poor demand response effect,the article proposes a demand response potential feature extraction and prediction model based on data mining and a demand response potential assessment model for adjustable loads in demand response scenarios based on subjective and objective weight analysis.Firstly,based on the demand response process and demand response behavior,obtain demand response characteristics that characterize the process and behavior.Secondly,establish a feature extraction and prediction model based on data mining,including similar day clustering,time series decomposition,redundancy processing,and data prediction.The predicted values of each demand response feature on the response day are obtained.Thirdly,the predicted data of various characteristics on the response day are used as demand response potential evaluation indicators to represent different demand response scenarios and adjustable loads,and a demand response potential evaluation model based on subjective and objective weight allocation is established to calculate the demand response potential of different adjustable loads in different demand response scenarios.Finally,the effectiveness of the method proposed in the article is verified through examples,providing a reference for load aggregators to formulate demand response schemes.展开更多
This study proposes a prediction model considering external weather and holiday factors to address the issue of accurately predicting urban taxi travel demand caused by complex data and numerous influencing factors.Th...This study proposes a prediction model considering external weather and holiday factors to address the issue of accurately predicting urban taxi travel demand caused by complex data and numerous influencing factors.The model integrates the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)and Convolutional Long Short Term Memory Neural Network(ConvLSTM)to predict short-term taxi travel demand.The CEEMDAN decomposition method effectively decomposes time series data into a set of modal components,capturing sequence characteristics at different time scales and frequencies.Based on the sample entropy value of components,secondary processing of more complex sequence components after decomposition is employed to reduce the cumulative prediction error of component sequences and improve prediction efficiency.On this basis,considering the correlation between the spatiotemporal trends of short-term taxi traffic,a ConvLSTM neural network model with Long Short Term Memory(LSTM)time series processing ability and Convolutional Neural Networks(CNN)spatial feature processing ability is constructed to predict the travel demand for urban taxis.The combined prediction model is tested on a taxi travel demand dataset in a certain area of Beijing.The results show that the CEEMDAN-ConvLSTM prediction model outperforms the LSTM,Autoregressive Integrated Moving Average model(ARIMA),CNN,and ConvLSTM benchmark models in terms of Symmetric Mean Absolute Percentage Error(SMAPE),Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and R2 metrics.Notably,the SMAPE metric exhibits a remarkable decline of 21.03%with the utilization of our proposed model.These results confirm that our study provides a highly accurate and valid model for taxi travel demand forecasting.展开更多
With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage co...With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage coordinated expansion planning model based on stochastic programming was proposed to suppress the impact of wind and solar energy fluctuations.Multiple types of system components,including demand response service entities,converter stations,DC transmission systems,cascade hydropower stations,and other traditional components,have been extensively modeled.Moreover,energy storage systems are considered to improve the accommodation level of renewable energy and alleviate the influence of intermittence.Demand-response service entities from the load side are used to reduce and move the demand during peak load periods.The uncertainties in wind,solar energy,and loads were simulated using stochastic programming.Finally,the effectiveness of the proposed model is verified through numerical simulations.展开更多
To facilitate the coordinated and large-scale participation of residential flexible loads in demand response(DR),a load aggregator(LA)can integrate these loads for scheduling.In this study,a residential DR optimizatio...To facilitate the coordinated and large-scale participation of residential flexible loads in demand response(DR),a load aggregator(LA)can integrate these loads for scheduling.In this study,a residential DR optimization scheduling strategy was formulated considering the participation of flexible loads in DR.First,based on the operational characteristics of flexible loads such as electric vehicles,air conditioners,and dishwashers,their DR participation,the base to calculate the compensation price to users,was determined by considering these loads as virtual energy storage.It was quantified based on the state of virtual energy storage during each time slot.Second,flexible loads were clustered using the K-means algorithm,considering the typical operational and behavioral characteristics as the cluster centroid.Finally,the LA scheduling strategy was implemented by introducing a DR mechanism based on the directrix load.The simulation results demonstrate that the proposed DR approach can effectively reduce peak loads and fill valleys,thereby improving the load management performance.展开更多
Demand-responsive transportation(DRT)is a flexible passenger service designed to enhance road efficiency,reduce peak-hour traffic,and boost passenger satisfaction.However,existing optimization methods for initial pass...Demand-responsive transportation(DRT)is a flexible passenger service designed to enhance road efficiency,reduce peak-hour traffic,and boost passenger satisfaction.However,existing optimization methods for initial passenger requests fall short in addressing real-time passenger needs.Consequently,there is a need to develop realtime DRT route optimization methods that integrate both initial and real-time requests.This paper presents a twostage,multi-objective optimization model for DRT vehicle scheduling.The first stage involves an initial scheduling model aimed at minimizing vehicle configuration,and operational,and CO_(2)emission costs while ensuring passenger satisfaction.The second stage develops a real-time scheduling model to minimize additional operational costs,penalties for time window violations,and costs due to rejected passengers,thereby addressing real-time demands.Additionally,an enhanced genetic algorithm based on Non-dominated Sorting Genetic Algorithm-II(NSGA-II)is designed,incorporating multiple crossover points to accelerate convergence and improve solution efficiency.The proposed scheduling model is validated using a real network in Shanghai.Results indicate that realtime scheduling can serve more passengers,and improve vehicle utilization and occupancy rates,with only a minor increase in total operational costs.Compared to the traditional NSGA-II algorithm,the improved version enhances convergence speed by 31.7%and solution speed by 4.8%.The proposed model and algorithm offer both theoretical and practical guidance for real-world DRT scheduling.展开更多
Accurate origin–destination(OD)demand prediction is crucial for the efficient operation and management of urban rail transit(URT)systems,particularly during a pandemic.However,this task faces several limitations,incl...Accurate origin–destination(OD)demand prediction is crucial for the efficient operation and management of urban rail transit(URT)systems,particularly during a pandemic.However,this task faces several limitations,including real-time availability,sparsity,and high-dimensionality issues,and the impact of the pandemic.Consequently,this study proposes a unified framework called the physics-guided adaptive graph spatial–temporal attention network(PAG-STAN)for metro OD demand prediction under pandemic conditions.Specifically,PAG-STAN introduces a real-time OD estimation module to estimate real-time complete OD demand matrices.Subsequently,a novel dynamic OD demand matrix compression module is proposed to generate dense real-time OD demand matrices.Thereafter,PAG-STAN leverages various heterogeneous data to learn the evolutionary trend of future OD ridership during the pandemic.Finally,a masked physics-guided loss function(MPG-loss function)incorporates the physical quantity information between the OD demand and inbound flow into the loss function to enhance model interpretability.PAG-STAN demonstrated favorable performance on two real-world metro OD demand datasets under the pandemic and conventional scenarios,highlighting its robustness and sensitivity for metro OD demand prediction.A series of ablation studies were conducted to verify the indispensability of each module in PAG-STAN.展开更多
In the restructured electricity market,microgrid(MG),with the incorporation of smart grid technologies,distributed energy resources(DERs),a pumped-storage-hydraulic(PSH)unit,and a demand response program(DRP),is a sma...In the restructured electricity market,microgrid(MG),with the incorporation of smart grid technologies,distributed energy resources(DERs),a pumped-storage-hydraulic(PSH)unit,and a demand response program(DRP),is a smarter and more reliable electricity provider.DER consists of gas turbines and renewable energy sources such as photovoltaic systems and wind turbines.Better bidding strategies,prepared by MG operators,decrease the electricity cost and emissions from upstream grid and conventional and renewable energy sources(RES).But it is inefficient due to the very high sporadic characteristics of RES and the very high outage rate.To solve these issues,this study suggests non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ)for an optimal bidding strategy considering pumped hydroelectric energy storage and DRP based on outage conditions and uncertainties of renewable energy sources.The uncertainty related to solar and wind units is modeled using lognormal and Weibull probability distributions.TOU-based DRP is used,especially considering the time of outages along with the time of peak loads and prices,to enhance the reliability of MG and reduce costs and emissions.展开更多
To improve the resilience of a distribution system against extreme weather,a fuel-based distributed generator(DG)allocation model is proposed in this study.In this model,the DGs are placed at the planning stage.When a...To improve the resilience of a distribution system against extreme weather,a fuel-based distributed generator(DG)allocation model is proposed in this study.In this model,the DGs are placed at the planning stage.When an extreme event occurs,the controllable generators form temporary microgrids(MGs)to restore the load maximally.Simultaneously,a demand response program(DRP)mitigates the imbalance between the power supply and demand during extreme events.To cope with the fault uncertainty,a robust optimization(RO)method is applied to reduce the long-term investment and short-term operation costs.The optimization is formulated as a tri-level defenderattacker-defender(DAD)framework.At the first level,decision-makers work out the DG allocation scheme;at the second level,the attacker finds the optimal attack strategy with maximum damage;and at the third level,restoration measures,namely distribution network reconfiguration(DNR)and demand response are performed.The problem is solved by the nested column and constraint generation(NC&CG)method and the model is validated using an IEEE 33-node system.Case studies validate the effectiveness and superiority of the proposed model according to the enhanced resilience and reduced cost.展开更多
To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,...To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.展开更多
文摘Food safety has become a major concern for consumers, as well as a priority for regulatory authorities. Faced with the growing industrial and domestic use of food additives, many questions are being asked and concerns are being felt by consumers around the world. Consumer perception defines the acceptability or rejection of food products, and has an impact on consumption patterns and behavior. To assess the level of knowledge and perception of food additives, a pilot study was carried out on a sample of 200 people in Dakar and Saint-Louis. A questionnaire was used to assess the acceptance or rejection, use and impact of food additives by consumers in Senegal. The results revealed several aspects. On the whole, the people surveyed expressed great mistrust and even rejection of these substances added to food products. This consumer perception is shared throughout the world, as indicated in numerous surveys. It also emerges from this study that, although most consumers are aware of the existence of these additives and their uses in the home, they feel that the use of these substances in industrial production is too excessive. What’s more, consumers associate food additives with numerous pathologies such as cancer, diabetes, hypertension, stroke and even sexual impotence. For some of these indexed pathologies, scientific studies have reached the same conclusions, although controversy still persists. On the other hand, for some of the other adverse effects mentioned, no cause-and-effect relationship has been scientifically demonstrated. In these latter cases, it seems that negative communication, misinformation and misconceptions have a major influence on consumer perception of food additives.
基金Projects of Education and Teaching Reform of the Teaching Steering Committee of Light Industry and Textile Majors in Guangdong Provincial Higher Vocational Colleges(No.2022QGF206)Research Foundation of Shenzhen Polytechnic under Grant 6022312025S.
文摘With the vigorous development of consumer culture in today’s society,various types of food packaging also appear in front of consumers in different forms.There are very big differences in food packaging in terms of shape,color,style and other aspects of information transmission,which have the most direct impact on the audience’s food consumption needs.Driven by the consumption-oriented society,food packaging has shown very obvious comprehensive characteristics,is significantly interdisciplinary,and has close connections with other disciplines.This article will analyze and sort out the impact of food packaging on consumer psychology from different perspectives.
文摘As e-commerce continues to mature,the advantages of live streaming within the industry have become increasingly apparent,offering significant growth opportunities.Social e-commerce platforms,which are user-centered,integrate social networks with e-commerce by leveraging social interactions to drive product sales and enhance the overall consumer shopping experience.This type of e-commerce fosters engagement and promotes products by merging online communities with shopping behavior,creating a more interactive and dynamic marketplace.It not only retains the traditional e-commerce trading and marketing functions but also adds a social dimension,making live stream anchors crucial figures connecting consumers with products.These anchors can attract consumers with their appearance and charm,and use their expertise on live streaming platforms to guide consumers by recommending live content.They can also interact with their audiences and potentially influence them to purchase the recommended goods.It is evident that the attributes of anchors in live streaming rooms significantly impact consumers’online behavior.Therefore,researching how platform contextual factors regulate consumers’online behavior is of great practical significance.This study employs multilevel regression analysis to support its hypotheses using data.The findings indicate that contextual factors of the platform significantly influence online behavior,enhancing the positive relationship between user attachment and online activities.
基金Scientific Research Project of Hefei Technology College(2024SKB08)Anhui Province Key Scientific Research Project(2022AH052219)。
文摘Through reviewing and summarizing the existing research on consumer motivation,and combining the characteristics of human behavior and the objective needs of environmental protection,this paper analyzes and defines consumers’purchase motivation.In the context of environmental protection,purchase motivation is divided into demand motivation,value recognition motivation,recognition motivation,and interest motivation.Their definitions are given in this paper,which provides a conceptual basis for further research on the influence of purchase motivation on consumer behavior in the context of environmental protection.
基金Yunnan Provincial Department of Education Scientific Research Fund Project“Construction and Development of‘Loose-Leaf’Teaching Material Resources for Landscape Engineering Vocational Education”(Project number:2022J1725)。
文摘Currently,talent training in Chinese universities for landscape architecture is mainly divided into three directions:“landscape planning and design,”“landscape construction management,”and“landscape plant planting and maintenance.”However,with the background of the slowing urbanization process and the widespread demand for composite talents in society,it remains to be verified whether the traditional three major talent training directions in landscape architecture align with the job demands in the current construction market.Based on a survey and analysis of over 300 industry practitioners,this study found a clear trend of merging the three major employment directions into“landscape design and construction”and“landscape plant planting and maintenance.”This presents new requirements and directions for the skill training of landscape architecture majors in universities and provides insights into the alignment between talent training and employment demands in other industries.
基金supported by the Special Research Project on Power Planning of the Guangdong Power Grid Co.,Ltd.
文摘To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitment,source-network load collaboration,and control of the load demand response.After the constraint functions are linearized,the original problem is decomposed into the main problem and subproblem as a matrix using the strong dual method.The minimum-maximum of the original problem was continuously maximized using the iterative method,and the optimal solution was finally obtained.The constraint conditions expressed by the matrix may reduce the calculation time,and the upper and lower boundaries of the original problem may rapidly converge.The results of the example show that the injected nodes of the wind farms in the power grid should be selected appropriately;otherwise,it is easy to cause excessive accommodation of wind power at some nodes,leading to a surge in reserve costs and the load demand response is continuously optimized to reduce the inverse peak regulation characteristics of wind power.Thus,the most economical optimization scheme for the worst scenario of the output power of the generators is obtained,which proves the economy and reliability of the two-stage robust optimization method.
基金support from the National Natural Science Foundation of China(71861147003,71925009,72141014).
文摘This paper examined consumers’experiences in and preferences for plant-based meat(PBM)food and their respective correlates,based on data from an online survey of 579 consumers in four major cities in China in early 2021.We first described consumers’experiences in consuming and purchasing PBM food and their correlates,and then analyzed consumer preferences using hypothetical choice experiment.The experiment offered consumers various options to purchase burgers made from PBM or animal-based meat(ABM),combined with different countries of origin(COO),taste labels,and prices.Our data showed that respondents hold overall positive attitudes toward PBM food;85 and 82%of respondents reported experience in eating and purchasing PBM food,respectively.More than half of them ate PBM food because they wanted to try new food(58%),or were interested in healthy food(56%).Income,religion,and dietary restrictions were significantly correlated with consumers’experiences in PBM food consumption.Results from the Random Parameter Logit Model based on the hypothetical choice experiment data showed that 79%of respondents chose PBM burgers and were willing to pay an average of 88 CNY for a PBM burger.We also found that 99.8 and 83%of respondents are willing to buy burgers made in China and those with a taste label,with a willingness to pay(WTP)of 208 and 120 CNY,respectively.The heterogeneity test revealed that females and those with at least a bachelor’s degree,higher income,religious beliefs,and dietary restrictions are more likely to buy PBM burgers than their counterparts.
基金supported by the Program for Innovative Research Team(in Science and Technology)in University of Henan Province(No.22IRTSTHN016)the Hubei Natural Science Foundation(No.2021CFB156)the Japan Society for the Promotion of Science(JSPS)Grants-in-Aid for Scientific Research(KAKENHI)(No.JP21K17737).
文摘Bio-inspired computer modelling brings solutions fromthe living phenomena or biological systems to engineering domains.To overcome the obstruction problem of large-scale wind power consumption in Northwest China,this paper constructs a bio-inspired computer model.It is an optimal wind power consumption dispatching model of multi-time scale demand response that takes into account the involved high-energy load.First,the principle of wind power obstruction with the involvement of a high-energy load is examined in this work.In this step,highenergy load model with different regulation characteristics is established.Then,considering the multi-time scale characteristics of high-energy load and other demand-side resources response speed,a multi-time scale model of coordination optimization is built.An improved bio-inspired model incorporating particle swarm optimization is applied to minimize system operation and wind curtailment costs,as well as to find the most optimal energy configurationwithin the system.Lastly,we take an example of regional power grid in Gansu Province for simulation analysis.Results demonstrate that the suggested scheduling strategy can significantly enhance the wind power consumption level and minimize the system’s operational cost.
文摘To investigate the apparent age of Chinese cosmetic consumers and its influencing factors.The subjects’skin conditions in all dimensions were collected using professional instruments and clinical expert assessment,subjects’lifestyles,skin care and makeup habits were obtained through questionnaire.The apparent age of the subjects was obtained based on the visual perception of photos judged by observers and then averaged.The association between apparent age and skin characteristics,the association between the difference between apparent age and actual age and the subjects'lifestyle and its difference among cities were investigated.The results showed that apparent age had a high correlation with skin tone and severity of skin problems.The model of multiple regression analysis obtained a high resolution(R2=0.704).The use of skin care products may help to delay the apparent aging of the skin.The results of the study have some guiding significance for the development of anti-aging products and the evaluation of anti-aging efficacy and is informative for lifestyle choices to maintain youthfulness.
文摘China,recognized as the world’s largest developing nation,displays considerably lower per capita consumption of dietary supplements in comparison to Asian nations such as Japan and South Korea.However,in recent years,there has been a substantial surge in health consciousness among the Chinese populace.This trend is not confined to the middle-aged and elderly;even younger consumer demographics are exhibiting increased health awareness.Consequently,the target demographic for dietary supplements is transitioning towards a younger demographic.Within the Chinese dietary supplement industry,vitamin C has consistently held the largest market share,commanding a broad consumer base.This underscores the substantial role of vitamin C in the dietary supplement sector.In response to the trend towards a younger target demographic in the dietary supplement industry,adjustments are required to accommodate the preferences of this younger consumer group.This research,guided by Norman’s emotional design framework,executed a survey of over 200 respondents to investigate the preferences of Generation Z consumers in China.The research encompassed packaging,product forms,and brand imagery,corresponding to the emotional design’s visceral,behavioral,and reflective layers,with a primary focus on optimally meeting the emotional needs of Generation Z.The findings indicated that consumers favor products in capsule form,packaged in zip-lock.The predominant color scheme is clean white,accented by vibrant orange elements,while emphasizing the product’s health and scientific attributes.This study offers valuable insights for the continued evolution of the vitamin C dietary supplement market in China.
文摘Purpose–Facing the diverse needs of large-scale customers,based on available railway service resources and service capabilities,this paper aims to research the design method of railway freight service portfolio,select optimal service solutions and provide customers with comprehensive and customized freight services.Design/methodology/approach–Based on the characteristics of railway freight services throughout the entire process,the service system is decomposed into independent units of service functions,and a railway freight service combination model is constructed with the goal of minimizing response time,service cost and service time.A model solving algorithm based on adaptive genetic algorithm is proposed.Findings–Using the computational model,an empirical analysis was conducted on the entire process freight service plan for starch sold from Xi’an to Chengdu as an example.The results showed that the proposed optimization model and algorithm can effectively guide the design of freight plans and provide technical support for real-time response to customers’diversified entire process freight service needs.Originality/value–With the continuous optimization and upgrading of railway freight source structure,customer demands are becoming increasingly diverse and personalized.Studying and designing a reasonable railway freight service plan throughout the entire process is of great significance for timely response to customer needs,improving service efficiency and reducing design costs.
基金the National Natural Science Foundation of China Youth Fund,Research on Security Low Carbon Collaborative Situation Awareness of Comprehensive Energy System from the Perspective of Dynamic Security Domain(52307130).
文摘To address the issues of limited demand response data,low generalization of demand response potential evaluation,and poor demand response effect,the article proposes a demand response potential feature extraction and prediction model based on data mining and a demand response potential assessment model for adjustable loads in demand response scenarios based on subjective and objective weight analysis.Firstly,based on the demand response process and demand response behavior,obtain demand response characteristics that characterize the process and behavior.Secondly,establish a feature extraction and prediction model based on data mining,including similar day clustering,time series decomposition,redundancy processing,and data prediction.The predicted values of each demand response feature on the response day are obtained.Thirdly,the predicted data of various characteristics on the response day are used as demand response potential evaluation indicators to represent different demand response scenarios and adjustable loads,and a demand response potential evaluation model based on subjective and objective weight allocation is established to calculate the demand response potential of different adjustable loads in different demand response scenarios.Finally,the effectiveness of the method proposed in the article is verified through examples,providing a reference for load aggregators to formulate demand response schemes.
基金supported by the Surface Project of the National Natural Science Foundation of China(No.71273024)the Fundamental Research Funds for the Central Universities of China(2021YJS080).
文摘This study proposes a prediction model considering external weather and holiday factors to address the issue of accurately predicting urban taxi travel demand caused by complex data and numerous influencing factors.The model integrates the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)and Convolutional Long Short Term Memory Neural Network(ConvLSTM)to predict short-term taxi travel demand.The CEEMDAN decomposition method effectively decomposes time series data into a set of modal components,capturing sequence characteristics at different time scales and frequencies.Based on the sample entropy value of components,secondary processing of more complex sequence components after decomposition is employed to reduce the cumulative prediction error of component sequences and improve prediction efficiency.On this basis,considering the correlation between the spatiotemporal trends of short-term taxi traffic,a ConvLSTM neural network model with Long Short Term Memory(LSTM)time series processing ability and Convolutional Neural Networks(CNN)spatial feature processing ability is constructed to predict the travel demand for urban taxis.The combined prediction model is tested on a taxi travel demand dataset in a certain area of Beijing.The results show that the CEEMDAN-ConvLSTM prediction model outperforms the LSTM,Autoregressive Integrated Moving Average model(ARIMA),CNN,and ConvLSTM benchmark models in terms of Symmetric Mean Absolute Percentage Error(SMAPE),Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and R2 metrics.Notably,the SMAPE metric exhibits a remarkable decline of 21.03%with the utilization of our proposed model.These results confirm that our study provides a highly accurate and valid model for taxi travel demand forecasting.
基金supported by Science and Technology Project of SGCC(SGSW0000FZGHBJS2200070)。
文摘With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage coordinated expansion planning model based on stochastic programming was proposed to suppress the impact of wind and solar energy fluctuations.Multiple types of system components,including demand response service entities,converter stations,DC transmission systems,cascade hydropower stations,and other traditional components,have been extensively modeled.Moreover,energy storage systems are considered to improve the accommodation level of renewable energy and alleviate the influence of intermittence.Demand-response service entities from the load side are used to reduce and move the demand during peak load periods.The uncertainties in wind,solar energy,and loads were simulated using stochastic programming.Finally,the effectiveness of the proposed model is verified through numerical simulations.
基金supported by the Basic Science(Natural Science)Research Project of Jiangsu Higher Education Institutions(No.23KJB470020)the Natural Science Foundation of Jiangsu Province(Youth Fund)(No.BK20230384)。
文摘To facilitate the coordinated and large-scale participation of residential flexible loads in demand response(DR),a load aggregator(LA)can integrate these loads for scheduling.In this study,a residential DR optimization scheduling strategy was formulated considering the participation of flexible loads in DR.First,based on the operational characteristics of flexible loads such as electric vehicles,air conditioners,and dishwashers,their DR participation,the base to calculate the compensation price to users,was determined by considering these loads as virtual energy storage.It was quantified based on the state of virtual energy storage during each time slot.Second,flexible loads were clustered using the K-means algorithm,considering the typical operational and behavioral characteristics as the cluster centroid.Finally,the LA scheduling strategy was implemented by introducing a DR mechanism based on the directrix load.The simulation results demonstrate that the proposed DR approach can effectively reduce peak loads and fill valleys,thereby improving the load management performance.
文摘Demand-responsive transportation(DRT)is a flexible passenger service designed to enhance road efficiency,reduce peak-hour traffic,and boost passenger satisfaction.However,existing optimization methods for initial passenger requests fall short in addressing real-time passenger needs.Consequently,there is a need to develop realtime DRT route optimization methods that integrate both initial and real-time requests.This paper presents a twostage,multi-objective optimization model for DRT vehicle scheduling.The first stage involves an initial scheduling model aimed at minimizing vehicle configuration,and operational,and CO_(2)emission costs while ensuring passenger satisfaction.The second stage develops a real-time scheduling model to minimize additional operational costs,penalties for time window violations,and costs due to rejected passengers,thereby addressing real-time demands.Additionally,an enhanced genetic algorithm based on Non-dominated Sorting Genetic Algorithm-II(NSGA-II)is designed,incorporating multiple crossover points to accelerate convergence and improve solution efficiency.The proposed scheduling model is validated using a real network in Shanghai.Results indicate that realtime scheduling can serve more passengers,and improve vehicle utilization and occupancy rates,with only a minor increase in total operational costs.Compared to the traditional NSGA-II algorithm,the improved version enhances convergence speed by 31.7%and solution speed by 4.8%.The proposed model and algorithm offer both theoretical and practical guidance for real-world DRT scheduling.
基金supported by the National Natural Science Foundation of China(72288101,72201029,and 72322022).
文摘Accurate origin–destination(OD)demand prediction is crucial for the efficient operation and management of urban rail transit(URT)systems,particularly during a pandemic.However,this task faces several limitations,including real-time availability,sparsity,and high-dimensionality issues,and the impact of the pandemic.Consequently,this study proposes a unified framework called the physics-guided adaptive graph spatial–temporal attention network(PAG-STAN)for metro OD demand prediction under pandemic conditions.Specifically,PAG-STAN introduces a real-time OD estimation module to estimate real-time complete OD demand matrices.Subsequently,a novel dynamic OD demand matrix compression module is proposed to generate dense real-time OD demand matrices.Thereafter,PAG-STAN leverages various heterogeneous data to learn the evolutionary trend of future OD ridership during the pandemic.Finally,a masked physics-guided loss function(MPG-loss function)incorporates the physical quantity information between the OD demand and inbound flow into the loss function to enhance model interpretability.PAG-STAN demonstrated favorable performance on two real-world metro OD demand datasets under the pandemic and conventional scenarios,highlighting its robustness and sensitivity for metro OD demand prediction.A series of ablation studies were conducted to verify the indispensability of each module in PAG-STAN.
文摘In the restructured electricity market,microgrid(MG),with the incorporation of smart grid technologies,distributed energy resources(DERs),a pumped-storage-hydraulic(PSH)unit,and a demand response program(DRP),is a smarter and more reliable electricity provider.DER consists of gas turbines and renewable energy sources such as photovoltaic systems and wind turbines.Better bidding strategies,prepared by MG operators,decrease the electricity cost and emissions from upstream grid and conventional and renewable energy sources(RES).But it is inefficient due to the very high sporadic characteristics of RES and the very high outage rate.To solve these issues,this study suggests non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ)for an optimal bidding strategy considering pumped hydroelectric energy storage and DRP based on outage conditions and uncertainties of renewable energy sources.The uncertainty related to solar and wind units is modeled using lognormal and Weibull probability distributions.TOU-based DRP is used,especially considering the time of outages along with the time of peak loads and prices,to enhance the reliability of MG and reduce costs and emissions.
基金supported by the Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China (J2022160,Research on Key Technologies of Distributed Power Dispatching Control for Resilience Improvement of Distribution Networks).
文摘To improve the resilience of a distribution system against extreme weather,a fuel-based distributed generator(DG)allocation model is proposed in this study.In this model,the DGs are placed at the planning stage.When an extreme event occurs,the controllable generators form temporary microgrids(MGs)to restore the load maximally.Simultaneously,a demand response program(DRP)mitigates the imbalance between the power supply and demand during extreme events.To cope with the fault uncertainty,a robust optimization(RO)method is applied to reduce the long-term investment and short-term operation costs.The optimization is formulated as a tri-level defenderattacker-defender(DAD)framework.At the first level,decision-makers work out the DG allocation scheme;at the second level,the attacker finds the optimal attack strategy with maximum damage;and at the third level,restoration measures,namely distribution network reconfiguration(DNR)and demand response are performed.The problem is solved by the nested column and constraint generation(NC&CG)method and the model is validated using an IEEE 33-node system.Case studies validate the effectiveness and superiority of the proposed model according to the enhanced resilience and reduced cost.
基金supported by Natural Science Foundation Project of Gansu Provincial Science and Technology Department(No.1506RJZA084)Gansu Provincial Education Department Scientific Research Fund Grant Project(No.1204-13).
文摘To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.