Collisions between multibody systems are irreversible processes which cause loss of internal energy by a stress wave that propagates in the impacting bodies away from the region of impact. A coefficient of restitution...Collisions between multibody systems are irreversible processes which cause loss of internal energy by a stress wave that propagates in the impacting bodies away from the region of impact. A coefficient of restitution relating to approach velocity is introduced to denote the losses of translational kinetic energy. A parameter β involved in internal energy losses has been obtained to calculate the coefficient of restitution. As a result, the internal energy losses caused by elastic stress waves and the contact duration in metals can be calculated numerically for the collision between circular cylinder and half plane. The metals include aluminum alloys, steel-mild 1020, steel-stainless austenitic 304, tungsten alloys, copper alloys, nickel alloys and titanium alloys. By introducing a coefficient of velocity-frequency, an exponential aggression equation related the normalized oscillating frequency and normalized approach velocity has been obtained by the numerical method.展开更多
文摘Collisions between multibody systems are irreversible processes which cause loss of internal energy by a stress wave that propagates in the impacting bodies away from the region of impact. A coefficient of restitution relating to approach velocity is introduced to denote the losses of translational kinetic energy. A parameter β involved in internal energy losses has been obtained to calculate the coefficient of restitution. As a result, the internal energy losses caused by elastic stress waves and the contact duration in metals can be calculated numerically for the collision between circular cylinder and half plane. The metals include aluminum alloys, steel-mild 1020, steel-stainless austenitic 304, tungsten alloys, copper alloys, nickel alloys and titanium alloys. By introducing a coefficient of velocity-frequency, an exponential aggression equation related the normalized oscillating frequency and normalized approach velocity has been obtained by the numerical method.