The efficiency of photocatalytic CO_(2) reduction reaction(PCRR)is restricted by the low solubility and mobility of CO_(2) in water,poor CO_(2) adsorption capacity of catalyst,and competition with hydrogen evolution r...The efficiency of photocatalytic CO_(2) reduction reaction(PCRR)is restricted by the low solubility and mobility of CO_(2) in water,poor CO_(2) adsorption capacity of catalyst,and competition with hydrogen evolution reaction(HER).Recently,hydrophobic modification of the catalyst surface has been proposed as a potential solution to induce the formation of triple-phase contact points(TPCPs)of CO_(2)(gas phase),H_(2) O(liquid phase),and catalysts(solid phase)near the surface of the catalyst,enabling direct delivery of highly concentrated CO_(2) molecules to the active reaction sites,resulting in higher CO_(2) and lower H+surface concentrations.The TPCPs thus act as the ideal reaction points with enhanced PCRR and suppressed HER.However,the initial synthesis of triple-phase photocatalysts tends to possess a lower bulk density of TPCPs due to the simple structure leading to limited active points and CO_(2) adsorption sites.Here,based on constructing a hydrophobic hierarchical porous TiO_(2)(o-HPT)with interconnected macropores and mesopores structure,we have significantly increased the density of TPCPs in a unit volume of the photocatalyst.Compared with hydrophobic macroporous TiO_(2)(o-MacPT)or mesoporous TiO_(2)(o-MesPT),the o-HPT with increased TPCP density leads to enhanced photoactivity,enabling a high methanol production rate with 1111.5μmol g^(−1) h^(−1) from PCRR.These results emphasize the significance of high-density TPCPs design and propose a potential path for developing efficient PCRR systems.展开更多
The contact point configuration should be carefully chosen to ensure a stable capture,especially for the non-cooperative target capture mission using multi-armed spacecraft.In this work scenario,the contact points on ...The contact point configuration should be carefully chosen to ensure a stable capture,especially for the non-cooperative target capture mission using multi-armed spacecraft.In this work scenario,the contact points on the base and on the arms are distributed on the opposite side of the target.Otherwise,large forces will be needed.To cope with this problem,an uneven-oriented distribution union criterion is proposed.The union criterion contains a virtual symmetrical criterion and a geometry criterion.The virtual symmetrical contact point criterion is derived from the proof of the force closure principle using computational geometry to ensure a stable grasp,and the geometry criterion is calculated by the volume of the minimum polyhedron formed by the contact points to get a wide-range distribution.To further accelerate the optimization rate and enhance the global search ability,a line array modeling method and a continuous-discrete global search algorithm are proposed.The line array modeling method reduces the workload of calculating the descent direction and the gradient available,while the continuous-discrete global search algorithm reducing the optimization dimension.Then a highly efficient grasping is achieved and the corresponding contact point is calculated.Finally,an exhaustive verification is conducted to numerically analyze the disturbance resistance ability,and simulation results demonstrate the effectiveness of the proposed algorithms.展开更多
Purpose-Under the high-speed operating conditions,the effects of wheelset elastic deformation on the wheel rail dynamic forces will become more notable compared to the low-speed condition.In order to meet different an...Purpose-Under the high-speed operating conditions,the effects of wheelset elastic deformation on the wheel rail dynamic forces will become more notable compared to the low-speed condition.In order to meet different analysis requirements and selecting appropriate models to analyzing the wheel rail interaction,it is crucial to understand the influence of wheelset flexibility on the wheel-rail dynamics under different speeds and track excitations condition.Design/methodology/approach-The wheel rail contact points solving method and vehicle dynamics equations considering wheelset flexibility in the trajectory body coordinate system were investigated in this paper.As for the wheel-rail contact forces,which is a particular force element in vehicle multibody system,a method for calculating the Jacobian matrix of the wheel-rail contact force is proposed to better couple the wheel-rail contact force calculation with the vehicle dynamics response calculation.Based on the flexible wheelset modeling approach in this paper,two vehicle dynamic models considering the wheelset as both elastic and rigid bodies are established,two kinds of track excitations,namely normal measured track irregularities and short-wave irregularities are used,wheel-rail geometric contact characteristic and wheel-rail contact forces in both time and frequency domains are compared with the two models in order to study the influence of flexible wheelset rotation effect on wheel rail contact force.Findings-Under normal track irregularity excitations,the amplitudes of vertical,longitudinal and lateral forces computed by the flexible wheelset model are smaller than those of the rigid wheelset model,and the virtual penetration and equivalent contact patch are also slightly smaller.For the flexible wheelset model,the wheel rail longitudinal and lateral creepages will also decrease.The higher the vehicle speed,the larger the differences in wheel-rail forces computed by the flexible and rigid wheelset model.Under track short-wave irregularity excitations,the vertical force amplitude computed by the flexible wheelset is also smaller than that of the rigid wheelset.However,unlike the excitation case of measured track irregularity,under short-wave excitations,for the speed within the range of 200 to 350 km/h,the difference in the amplitude of the vertical force between the flexible and rigid wheelset models gradually decreases as the speed increase.This is partly due to the contribution of wheelset's elastic vibration under short-wave excitations.For low-frequency wheel-rail force analysis problems at speeds of 350 km/h and above,as well as high-frequency wheel-rail interaction analysis problems under various speed conditions,the flexible wheelset model will give results agrees better with the reality.Originality/value-This study provides reference for the modeling method of the flexible wheelset and the coupling method of wheel-rail contact force to the vehicle multibody dynamics system.Furthermore,by comparative research,the influence of wheelset flexibility and rotation on wheel-rail dynamic behavior are obtained,which is useful to the application scope of rigid and flexible wheelset models.展开更多
The wheel-rail contact problems, such as the number, location and the track of contact patches, are very important for optimizing the spatial structure of the rails and lowering the vehicle-turnout system dynamics. Ho...The wheel-rail contact problems, such as the number, location and the track of contact patches, are very important for optimizing the spatial structure of the rails and lowering the vehicle-turnout system dynamics. However, the above problems are not well solved currently because of having the difficulties in how to determine the multi-contact, to preciously present the changeable profiles of the rails and to establish an accurate spatial turnout system dynamics model. Based on a high-speed vehicle-turnout coupled model in which the track is modeled as flexible with rails and sleepers represented by beams, the line tracing extreme point method is introduced to investigate the wheel-rail multiple contact conditions and the key sections of the blade rail, longer nose rail, shorter rail in the switch and nose rail area are discretized to represent the varying profiles of rails in the turnout. The dynamic interaction between the vehicle and turnout is simulated for cases of the vehicle divergently passing the turnout and the multi-point contact is obtained. The tracks of the contact patches on the top of the rails are presented and the wheel-rail impact forces are offered in comparison with the contact patches transference on the rails. The numerical simulation results indicate that the length of two-point contact occurrence of a worn wheel profile and rails is longer than that of the new wheel profile and rails; The two-point contact definitely occurs in the switch and crossing area. Generally, three-point contact doesn’t occur for the new rail profile, which is testified by the wheel-rails interpolation distance and the first order derivative function of the tracing line extreme points. The presented research is not only helpful to optimize the structure of the turnout, but also useful to lower the dynamics of the high speed vehicle-turnout system.展开更多
Using scanning tunneling spectroscopy, we studied the transition from tunneling regime to local point contact on the iron-based superconductor Ba0.6K0.4Fe2As2. By gradually reducing the junction resistance, a series o...Using scanning tunneling spectroscopy, we studied the transition from tunneling regime to local point contact on the iron-based superconductor Ba0.6K0.4Fe2As2. By gradually reducing the junction resistance, a series of spectra were obtained with the characteristics evolving from single-particle tunneling into Andreev reflection. The spectra can be well fitted to the modified Blonder–Tinkham–Klapwijk(BTK) model and exhibit significant changes of both spectral broadening and orbital selection due to the formation of point contact. The spatial resolution of the point contact was estimated to be several nanometers, providing a unique way to study the inhomogeneity of unconventional superconductors on such a scale.展开更多
Clearance not only affects the startup torque,rotation precision and stiffness of bearing,but also affects the load distribution,load-carrying capacity and life of bearing.A computational model in which the clearance ...Clearance not only affects the startup torque,rotation precision and stiffness of bearing,but also affects the load distribution,load-carrying capacity and life of bearing.A computational model in which the clearance of bearing is first included is presented for determining the contact force distribution and static load-carrying capacity of a double row four-point contact ball bearing which is subjected to the combined radial,axial and overturning moment loadings.The relation between the negative axial clearance and the contact force distribution is analyzed.The static load-carrying capacity curves are established,and the effects of the changes in negative axial clearance,curvature radius coefficient of raceway groove and initial contact angle on the static load-carrying capacity are analyzed.The results show that,with the increase in the absolute value of negative clearance,the maximum contact load decreases first and then increases.The clearance values in the range of 0.2 mme0 mm have little effect on the static load-carrying capacity of bearing.With the increase in the curvature radius coefficient of raceway groove and the decrease in the initial contact angle,the static load capacity of bearing decreases.展开更多
Micromagnetic simulation is employed to study the gyration motion of magnetic vortices in distinct permalloy nanodisks driven by a spin-polarized current. The critical current density for magnetic vortex gyration, eig...Micromagnetic simulation is employed to study the gyration motion of magnetic vortices in distinct permalloy nanodisks driven by a spin-polarized current. The critical current density for magnetic vortex gyration, eigenfrequency, trajectory, velocity and the time for a magnetic vortex to obtain the steady gyration are analyzed. Simulation results reveal that the magnetic vortices in larger and thinner nanodisks can achieve a lower-frequency gyration at a lower current density in a shorter time. However, the magnetic vortices in thicker nanodisks need a higher current density and longer time to attain steady gyration but with a higher eigenfrequency. We also find that the point-contact position exerts different influences on these parameters in different nanodisks, which contributes to the control of the magnetic vortex gyration. The conclusions of this paper can serve as a theoretical basis for designing nano-oscillators and microwave frequency modulators.展开更多
In this work,we discuss the origin of several anomalies present in the point-contact Andreev reflection spectra of(Li1-xFex)OHFeSe,LiTi2O4,and La2-xCexCuO4.While these features are similar to those stemming from int...In this work,we discuss the origin of several anomalies present in the point-contact Andreev reflection spectra of(Li1-xFex)OHFeSe,LiTi2O4,and La2-xCexCuO4.While these features are similar to those stemming from intrinsic superconducting properties,such as Andreev reflection,electron-boson coupling,multigap superconductivity,d-wave and p-wave pairing symmetry,they cannot be accounted for by the modified Blonder–Tinkham–Klapwijk(BTK) model,but require to consider critical current effects arising from the junction geometry.Our results point to the importance of tracking the evolution of the dips and peaks in the differential conductance as a function of the bias voltage,in order to correctly deduce the properties of the superconducting state.展开更多
The contact fatigue life of machine elements is affected by pitting, wear and so on, under heavier loading conditions. Increasing the fatigue life requires mainly the improvements of lubricating condition, operating c...The contact fatigue life of machine elements is affected by pitting, wear and so on, under heavier loading conditions. Increasing the fatigue life requires mainly the improvements of lubricating condition, operating condition and materials. In order to improve the lubricating condition, it is necessary to investigate the relation of the microscopic surface texturing and the contact modes of machine elements. In this paper, thus, the pressure and oil film thickness of the contact between sphere and the plate with 5 kinds surface texturing were calculated using a commercial software based on Reynolds equation. There was sufficient evidence to suggest that the dimple shape was the optimum texturing to increase the lubricating condition.展开更多
This letter presents an analytical solution to the hydrodynamic lubrication of a circular point contact sliding over a flat surface with cavitation.The solution is found by solving the Reynolds equation with Reynolds ...This letter presents an analytical solution to the hydrodynamic lubrication of a circular point contact sliding over a flat surface with cavitation.The solution is found by solving the Reynolds equation with Reynolds boundary condition for cavitation.The cavitation boundary is shown to be straight lines directed 108.4°against the sliding direction.The result is experimentally verified in the limit of large values of viscosity,sliding velocity and radius of a spherical ball.The solution raises questions about the coupling between cavitation and film rupture and can be used as an independent check on the validity of numerical solutions.展开更多
An experimental study on the current shot noise of a quantum point contact with short channel length is reported. The experimentally measured maximum energy level spacing between the ground and the first excited state...An experimental study on the current shot noise of a quantum point contact with short channel length is reported. The experimentally measured maximum energy level spacing between the ground and the first excited state of the device reached up to 7.5meV, probably due to the hard wall confinement by using shallow electron gas and sharp point contact geometry. The two-dimensionM non-equilibrium shot noise contour map shows noise suppression characteristics in a wide range of bias voltage. Fano factor analysis indicates spin-polarized transport through a short quantum point contact.展开更多
Apart from usual quantization steps on the ballistic conductance of quasi-one-dimensional conductor, an additional plateau-like feature appears at a fraction of about 0.7 below the first conductance step in GaAs-based...Apart from usual quantization steps on the ballistic conductance of quasi-one-dimensional conductor, an additional plateau-like feature appears at a fraction of about 0.7 below the first conductance step in GaAs-based quantum point contacts (QPCs). Despite a tremendous amount of research on this anomalous feature, its origin remains still unclear. Here, a unique model of this anomaly is proposed relying on fundamental principles of quantum mechanics. It is noticed that just after opening a quasi-1D conducting channel in the QPC a single electron travels the channel at a time, and such electron can be—in principle—observed. The act of observation destroys superposition of spin states, in which the electron otherwise exists, and this suppresses their quantum interference. It is shown that then the QPC-conductance is reduced by a factor of 0.74. “Visibility” of electron is enhanced if the electron spends some time in the channel due to resonant transmission. Electron’s resonance can also explain an unusual temperature behavior of the anomaly as well as its recently discovered feature: oscillatory modulation as a function of the channel length and electrostatic potential. A recipe for experimental verification of the model is given.展开更多
基金National Natural Science Foundation of China(Nos.22008121,11774173,51790492)the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(No.T2125004)+2 种基金the Fundamental Research Funds for the Central Universities(Nos.30920032204,30920041115)the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(No.2022-K12)Funding of NJUST(No.TSXK2022D002)for financial support.
文摘The efficiency of photocatalytic CO_(2) reduction reaction(PCRR)is restricted by the low solubility and mobility of CO_(2) in water,poor CO_(2) adsorption capacity of catalyst,and competition with hydrogen evolution reaction(HER).Recently,hydrophobic modification of the catalyst surface has been proposed as a potential solution to induce the formation of triple-phase contact points(TPCPs)of CO_(2)(gas phase),H_(2) O(liquid phase),and catalysts(solid phase)near the surface of the catalyst,enabling direct delivery of highly concentrated CO_(2) molecules to the active reaction sites,resulting in higher CO_(2) and lower H+surface concentrations.The TPCPs thus act as the ideal reaction points with enhanced PCRR and suppressed HER.However,the initial synthesis of triple-phase photocatalysts tends to possess a lower bulk density of TPCPs due to the simple structure leading to limited active points and CO_(2) adsorption sites.Here,based on constructing a hydrophobic hierarchical porous TiO_(2)(o-HPT)with interconnected macropores and mesopores structure,we have significantly increased the density of TPCPs in a unit volume of the photocatalyst.Compared with hydrophobic macroporous TiO_(2)(o-MacPT)or mesoporous TiO_(2)(o-MesPT),the o-HPT with increased TPCP density leads to enhanced photoactivity,enabling a high methanol production rate with 1111.5μmol g^(−1) h^(−1) from PCRR.These results emphasize the significance of high-density TPCPs design and propose a potential path for developing efficient PCRR systems.
基金supported by the National Natural Science Foundation of China(Nos.62003115,11972130)Shenzhen Natural Science Fund(the Stable Support Plan Program GXWD20201230155427003-20200821170719001).
文摘The contact point configuration should be carefully chosen to ensure a stable capture,especially for the non-cooperative target capture mission using multi-armed spacecraft.In this work scenario,the contact points on the base and on the arms are distributed on the opposite side of the target.Otherwise,large forces will be needed.To cope with this problem,an uneven-oriented distribution union criterion is proposed.The union criterion contains a virtual symmetrical criterion and a geometry criterion.The virtual symmetrical contact point criterion is derived from the proof of the force closure principle using computational geometry to ensure a stable grasp,and the geometry criterion is calculated by the volume of the minimum polyhedron formed by the contact points to get a wide-range distribution.To further accelerate the optimization rate and enhance the global search ability,a line array modeling method and a continuous-discrete global search algorithm are proposed.The line array modeling method reduces the workload of calculating the descent direction and the gradient available,while the continuous-discrete global search algorithm reducing the optimization dimension.Then a highly efficient grasping is achieved and the corresponding contact point is calculated.Finally,an exhaustive verification is conducted to numerically analyze the disturbance resistance ability,and simulation results demonstrate the effectiveness of the proposed algorithms.
基金China National Railway Group Science and Technology Program(N2022J009)China Academy of Railway Sciences Group Co.,Ltd.Program(2021YJ036).
文摘Purpose-Under the high-speed operating conditions,the effects of wheelset elastic deformation on the wheel rail dynamic forces will become more notable compared to the low-speed condition.In order to meet different analysis requirements and selecting appropriate models to analyzing the wheel rail interaction,it is crucial to understand the influence of wheelset flexibility on the wheel-rail dynamics under different speeds and track excitations condition.Design/methodology/approach-The wheel rail contact points solving method and vehicle dynamics equations considering wheelset flexibility in the trajectory body coordinate system were investigated in this paper.As for the wheel-rail contact forces,which is a particular force element in vehicle multibody system,a method for calculating the Jacobian matrix of the wheel-rail contact force is proposed to better couple the wheel-rail contact force calculation with the vehicle dynamics response calculation.Based on the flexible wheelset modeling approach in this paper,two vehicle dynamic models considering the wheelset as both elastic and rigid bodies are established,two kinds of track excitations,namely normal measured track irregularities and short-wave irregularities are used,wheel-rail geometric contact characteristic and wheel-rail contact forces in both time and frequency domains are compared with the two models in order to study the influence of flexible wheelset rotation effect on wheel rail contact force.Findings-Under normal track irregularity excitations,the amplitudes of vertical,longitudinal and lateral forces computed by the flexible wheelset model are smaller than those of the rigid wheelset model,and the virtual penetration and equivalent contact patch are also slightly smaller.For the flexible wheelset model,the wheel rail longitudinal and lateral creepages will also decrease.The higher the vehicle speed,the larger the differences in wheel-rail forces computed by the flexible and rigid wheelset model.Under track short-wave irregularity excitations,the vertical force amplitude computed by the flexible wheelset is also smaller than that of the rigid wheelset.However,unlike the excitation case of measured track irregularity,under short-wave excitations,for the speed within the range of 200 to 350 km/h,the difference in the amplitude of the vertical force between the flexible and rigid wheelset models gradually decreases as the speed increase.This is partly due to the contribution of wheelset's elastic vibration under short-wave excitations.For low-frequency wheel-rail force analysis problems at speeds of 350 km/h and above,as well as high-frequency wheel-rail interaction analysis problems under various speed conditions,the flexible wheelset model will give results agrees better with the reality.Originality/value-This study provides reference for the modeling method of the flexible wheelset and the coupling method of wheel-rail contact force to the vehicle multibody dynamics system.Furthermore,by comparative research,the influence of wheelset flexibility and rotation on wheel-rail dynamic behavior are obtained,which is useful to the application scope of rigid and flexible wheelset models.
基金supported by National Natural Science Foundation of China (Grant Nos. 51175032, U1134201)National Basic Research Program of China (973 Program, Grant No. 2011CD711104)
文摘The wheel-rail contact problems, such as the number, location and the track of contact patches, are very important for optimizing the spatial structure of the rails and lowering the vehicle-turnout system dynamics. However, the above problems are not well solved currently because of having the difficulties in how to determine the multi-contact, to preciously present the changeable profiles of the rails and to establish an accurate spatial turnout system dynamics model. Based on a high-speed vehicle-turnout coupled model in which the track is modeled as flexible with rails and sleepers represented by beams, the line tracing extreme point method is introduced to investigate the wheel-rail multiple contact conditions and the key sections of the blade rail, longer nose rail, shorter rail in the switch and nose rail area are discretized to represent the varying profiles of rails in the turnout. The dynamic interaction between the vehicle and turnout is simulated for cases of the vehicle divergently passing the turnout and the multi-point contact is obtained. The tracks of the contact patches on the top of the rails are presented and the wheel-rail impact forces are offered in comparison with the contact patches transference on the rails. The numerical simulation results indicate that the length of two-point contact occurrence of a worn wheel profile and rails is longer than that of the new wheel profile and rails; The two-point contact definitely occurs in the switch and crossing area. Generally, three-point contact doesn’t occur for the new rail profile, which is testified by the wheel-rails interpolation distance and the first order derivative function of the tracing line extreme points. The presented research is not only helpful to optimize the structure of the turnout, but also useful to lower the dynamics of the high speed vehicle-turnout system.
基金supported by the National Natural Science Foundation of China(Grant Nos.11574372 and 11322432)the“Strategic Priority Research Program(B)”of the Chinese Academy of Sciences(Grant No.XDB07020300)
文摘Using scanning tunneling spectroscopy, we studied the transition from tunneling regime to local point contact on the iron-based superconductor Ba0.6K0.4Fe2As2. By gradually reducing the junction resistance, a series of spectra were obtained with the characteristics evolving from single-particle tunneling into Andreev reflection. The spectra can be well fitted to the modified Blonder–Tinkham–Klapwijk(BTK) model and exhibit significant changes of both spectral broadening and orbital selection due to the formation of point contact. The spatial resolution of the point contact was estimated to be several nanometers, providing a unique way to study the inhomogeneity of unconventional superconductors on such a scale.
基金supported by NSFC(51105131)Excellent Youth Foundation of Henan Scientific Committee(124100510002)Creative Talent Foundation in University of Henan Province(2011HASTIT016)
文摘Clearance not only affects the startup torque,rotation precision and stiffness of bearing,but also affects the load distribution,load-carrying capacity and life of bearing.A computational model in which the clearance of bearing is first included is presented for determining the contact force distribution and static load-carrying capacity of a double row four-point contact ball bearing which is subjected to the combined radial,axial and overturning moment loadings.The relation between the negative axial clearance and the contact force distribution is analyzed.The static load-carrying capacity curves are established,and the effects of the changes in negative axial clearance,curvature radius coefficient of raceway groove and initial contact angle on the static load-carrying capacity are analyzed.The results show that,with the increase in the absolute value of negative clearance,the maximum contact load decreases first and then increases.The clearance values in the range of 0.2 mme0 mm have little effect on the static load-carrying capacity of bearing.With the increase in the curvature radius coefficient of raceway groove and the decrease in the initial contact angle,the static load capacity of bearing decreases.
基金Project supported by the Thirteenth Five-Year Program for Science and Technology of Education Department of Jilin Province,China(Grant No.JJKH20191007KJ)the Program for Development of Science and Technology of Siping City,China(Grant No.2016063)
文摘Micromagnetic simulation is employed to study the gyration motion of magnetic vortices in distinct permalloy nanodisks driven by a spin-polarized current. The critical current density for magnetic vortex gyration, eigenfrequency, trajectory, velocity and the time for a magnetic vortex to obtain the steady gyration are analyzed. Simulation results reveal that the magnetic vortices in larger and thinner nanodisks can achieve a lower-frequency gyration at a lower current density in a shorter time. However, the magnetic vortices in thicker nanodisks need a higher current density and longer time to attain steady gyration but with a higher eigenfrequency. We also find that the point-contact position exerts different influences on these parameters in different nanodisks, which contributes to the control of the magnetic vortex gyration. The conclusions of this paper can serve as a theoretical basis for designing nano-oscillators and microwave frequency modulators.
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2015CB921000,2016YFA0300301,and 2017YFA0302902)the National Natural Science Foundation of China(Grant Nos.11674374 and 1474338)+5 种基金the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDB-SSW-SLH008)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB07020100 and XDB07030200)the Beijing Municipal Science and Technology Project(Grant No.Z161100002116011)the Fonds de la Recherche Scientifique–FNRS and the ARC Grant 13/18-08 for Concerted Research Actions,financed by the French Community of Belgium(Wallonia-Brussels Federation)Jérémy Brisbois acknowledges the support from F.R.S.–FNRS(Research Fellowship)The work of Alejandro V Silhanek is partially supported by PDR T.0106.16 of the F.R.S.–FNRS
文摘In this work,we discuss the origin of several anomalies present in the point-contact Andreev reflection spectra of(Li1-xFex)OHFeSe,LiTi2O4,and La2-xCexCuO4.While these features are similar to those stemming from intrinsic superconducting properties,such as Andreev reflection,electron-boson coupling,multigap superconductivity,d-wave and p-wave pairing symmetry,they cannot be accounted for by the modified Blonder–Tinkham–Klapwijk(BTK) model,but require to consider critical current effects arising from the junction geometry.Our results point to the importance of tracking the evolution of the dips and peaks in the differential conductance as a function of the bias voltage,in order to correctly deduce the properties of the superconducting state.
文摘The contact fatigue life of machine elements is affected by pitting, wear and so on, under heavier loading conditions. Increasing the fatigue life requires mainly the improvements of lubricating condition, operating condition and materials. In order to improve the lubricating condition, it is necessary to investigate the relation of the microscopic surface texturing and the contact modes of machine elements. In this paper, thus, the pressure and oil film thickness of the contact between sphere and the plate with 5 kinds surface texturing were calculated using a commercial software based on Reynolds equation. There was sufficient evidence to suggest that the dimple shape was the optimum texturing to increase the lubricating condition.
基金supported by the Swedish Foundation for Strategic Research(SSF)
文摘This letter presents an analytical solution to the hydrodynamic lubrication of a circular point contact sliding over a flat surface with cavitation.The solution is found by solving the Reynolds equation with Reynolds boundary condition for cavitation.The cavitation boundary is shown to be straight lines directed 108.4°against the sliding direction.The result is experimentally verified in the limit of large values of viscosity,sliding velocity and radius of a spherical ball.The solution raises questions about the coupling between cavitation and film rupture and can be used as an independent check on the validity of numerical solutions.
基金Supported by the Basic Science Research Program through the National Research Foundation of Korea under Grant No 2011-0004949
文摘An experimental study on the current shot noise of a quantum point contact with short channel length is reported. The experimentally measured maximum energy level spacing between the ground and the first excited state of the device reached up to 7.5meV, probably due to the hard wall confinement by using shallow electron gas and sharp point contact geometry. The two-dimensionM non-equilibrium shot noise contour map shows noise suppression characteristics in a wide range of bias voltage. Fano factor analysis indicates spin-polarized transport through a short quantum point contact.
文摘Apart from usual quantization steps on the ballistic conductance of quasi-one-dimensional conductor, an additional plateau-like feature appears at a fraction of about 0.7 below the first conductance step in GaAs-based quantum point contacts (QPCs). Despite a tremendous amount of research on this anomalous feature, its origin remains still unclear. Here, a unique model of this anomaly is proposed relying on fundamental principles of quantum mechanics. It is noticed that just after opening a quasi-1D conducting channel in the QPC a single electron travels the channel at a time, and such electron can be—in principle—observed. The act of observation destroys superposition of spin states, in which the electron otherwise exists, and this suppresses their quantum interference. It is shown that then the QPC-conductance is reduced by a factor of 0.74. “Visibility” of electron is enhanced if the electron spends some time in the channel due to resonant transmission. Electron’s resonance can also explain an unusual temperature behavior of the anomaly as well as its recently discovered feature: oscillatory modulation as a function of the channel length and electrostatic potential. A recipe for experimental verification of the model is given.