With the method of group test, fourty pairs of carburization-quenching gears made from 16NCD13 steel for aerocraft were tested to research the contacting fatigue strength on tooth flank. As a result, the samples of fa...With the method of group test, fourty pairs of carburization-quenching gears made from 16NCD13 steel for aerocraft were tested to research the contacting fatigue strength on tooth flank. As a result, the samples of fatigue life at the moments when the pitting appears and reaches failure criterion were obtained at four stressing levels respectively. The distribution rule of fatigue life were distinguished, and the distribution parameters were estimated by statistical analysis. Based on that, the R-S-N curves with confidence 95% of contacting fatigue on gear tooth flank were evaluated. Therefore, the basic data were provided for the reliability design of the gears and prediction of their life.展开更多
This work presented the characteristics of two gear teeth finishing methods, due to the properties of gear teeth surface layer obtained at the tooth working depth. These methods are: 1) the teeth carburization, harden...This work presented the characteristics of two gear teeth finishing methods, due to the properties of gear teeth surface layer obtained at the tooth working depth. These methods are: 1) the teeth carburization, hardening to a hardness of HRC 60-62 and then grinding, 2) the soft gear shaving as the final mechanical treatment and then carburizing and hardening to the hardness of HRC60-62. This work included the test results of the contact fatigue strength carried out on the circulating power system. The Wohler curves were plotted due to the obtained results, as the basis for the practical evaluation of the considered gear finishing methods. The parameters like volume distribution of the voids, content of the retained austenite, compressive residual stress value, but also the results of contact fatigue strength tests, are more favorable for the teeth shaving method than for the teeth grinding method.展开更多
The contact fatigue of aviation gears has become more prominent with greater demands for heavy-duty and high-power density gears.Meanwhile,the coexistence of tooth contact fatigue damage and tooth profile wear leads t...The contact fatigue of aviation gears has become more prominent with greater demands for heavy-duty and high-power density gears.Meanwhile,the coexistence of tooth contact fatigue damage and tooth profile wear leads to a complicated competitive mechanism between surface-initiated failure and subsurface-initiated contact fatigue failures.To address this issue,a fatigue-wear coupling model of an aviation gear pair was developed based on the elastic-plastic finite element method.The tooth profile surface roughness was considered,and its evolution during repeated meshing was simulated using the Archard wear formula.The fatigue damage accumulation of material points on and underneath the contact surface was captured using the Brown-Miller-Morrow multiaxial fatigue criterion.The elastic-plastic constitutive behavior of damaged material points was updated by incorporating the damage variable.Variations in the wear depth and fatigue damage around the pitch point are described,and the effect of surface roughness on the fatigue life is addressed.The results reveal that whether fatigue failure occurs initially on the surface or sub-surface depends on the level of surface roughness.Mild wear on the asperity level alleviates the local stress concentration and leads to a longer surface fatigue life compared with the result without wear.展开更多
文摘With the method of group test, fourty pairs of carburization-quenching gears made from 16NCD13 steel for aerocraft were tested to research the contacting fatigue strength on tooth flank. As a result, the samples of fatigue life at the moments when the pitting appears and reaches failure criterion were obtained at four stressing levels respectively. The distribution rule of fatigue life were distinguished, and the distribution parameters were estimated by statistical analysis. Based on that, the R-S-N curves with confidence 95% of contacting fatigue on gear tooth flank were evaluated. Therefore, the basic data were provided for the reliability design of the gears and prediction of their life.
文摘This work presented the characteristics of two gear teeth finishing methods, due to the properties of gear teeth surface layer obtained at the tooth working depth. These methods are: 1) the teeth carburization, hardening to a hardness of HRC 60-62 and then grinding, 2) the soft gear shaving as the final mechanical treatment and then carburizing and hardening to the hardness of HRC60-62. This work included the test results of the contact fatigue strength carried out on the circulating power system. The Wohler curves were plotted due to the obtained results, as the basis for the practical evaluation of the considered gear finishing methods. The parameters like volume distribution of the voids, content of the retained austenite, compressive residual stress value, but also the results of contact fatigue strength tests, are more favorable for the teeth shaving method than for the teeth grinding method.
基金The work was supported by the National Key R&D Program of China(Grant No.2018YFB2001300).
文摘The contact fatigue of aviation gears has become more prominent with greater demands for heavy-duty and high-power density gears.Meanwhile,the coexistence of tooth contact fatigue damage and tooth profile wear leads to a complicated competitive mechanism between surface-initiated failure and subsurface-initiated contact fatigue failures.To address this issue,a fatigue-wear coupling model of an aviation gear pair was developed based on the elastic-plastic finite element method.The tooth profile surface roughness was considered,and its evolution during repeated meshing was simulated using the Archard wear formula.The fatigue damage accumulation of material points on and underneath the contact surface was captured using the Brown-Miller-Morrow multiaxial fatigue criterion.The elastic-plastic constitutive behavior of damaged material points was updated by incorporating the damage variable.Variations in the wear depth and fatigue damage around the pitch point are described,and the effect of surface roughness on the fatigue life is addressed.The results reveal that whether fatigue failure occurs initially on the surface or sub-surface depends on the level of surface roughness.Mild wear on the asperity level alleviates the local stress concentration and leads to a longer surface fatigue life compared with the result without wear.