A simple interface element for analyzing contact friction problems is developed. Taking nodal displacements and contact stresses as unknowns, this element can simulate frictional slippage, decoupling and re-bonding of...A simple interface element for analyzing contact friction problems is developed. Taking nodal displacements and contact stresses as unknowns, this element can simulate frictional slippage, decoupling and re-bonding of two bodies initially mating or having gaps at a common interface. The method is based on the Finite Element Method and load incremental theory. The geometric and static constraint conditions on contact surfaces are treated as additional conditions and are included in stiffness equations. This simple element has the advantages of easy implementation into standard finite element programs and fast speed for convergence as well as high accuracy for stress distribution in interface. Undesirable stress oscillations are also investigated whenever large stress gradients exist over the contact surfaces. Exact integration or the conventional Gauss integration scheme used to evaluate the interpolation function matrix of the interface element is found to be the source of the oscillations. Eigenmode analysis demonstrates that the stress behavior of an interface element can be improved by using the Newton-Cotes integration scheme. Finally, the test example of a strip footing problem is presented.展开更多
To evaluate the dynamic behavior of a container crane under seismic loads accurately,the contact state between the wheels and the rails or the ground that significantly affect the seismic response of the structure mus...To evaluate the dynamic behavior of a container crane under seismic loads accurately,the contact state between the wheels and the rails or the ground that significantly affect the seismic response of the structure must be considered elaborately.This paper has proposed a modeling method based on the theory of contact and friction for simulating the nonlinear seismic response of large and flexible structure of a jumbo movable container crane,including the contact problem regarding the wheels attached to the bottom of its legs and the rails on which they ride.These models are used to perform extensive dynamic time-history analysis in order to find out their nonlinear dynamic behavior under various excitation modes.It is found that the presented numerical modeling method simulates the nonlinear seismic response of a container crane quite well.Notably,it can verify and expand our understanding of the seismic behaviors by evaluating response performance for the large seaport cranes.展开更多
In this paper,a frictional contact problem between an electro-elastic body and an electrically conductive foundation is studied.The contact is modeled by normal compliance with finite penetration and a version of Coul...In this paper,a frictional contact problem between an electro-elastic body and an electrically conductive foundation is studied.The contact is modeled by normal compliance with finite penetration and a version of Coulomb’s law of dry friction in which the coefficient of friction depends on the slip.In addition,the effects of the electrical conductivity of the foundation are taken into account.This model leads to a coupled system of the quasi-variational inequality of the elliptic type for the displacement and the nonlinear variational equation for the electric potential.The existence of a weak solution is proved by using an abstract result for elliptic variational inequalities and a fixed point argument.Then,a finite element approximation of the problem is presented.Under some regularity conditions,an optimal order error estimate of the approximate solution is derived.Finally,a successive iteration technique is used to solve the problem numerically and a convergence result is established.展开更多
The 3-D traction field in the pressure screw-pair of a 3 500 heavy and mediumplate mill press down system is successfully calculated by applying the 3-D frictional contactmultipole-BEM and the corresponding program th...The 3-D traction field in the pressure screw-pair of a 3 500 heavy and mediumplate mill press down system is successfully calculated by applying the 3-D frictional contactmultipole-BEM and the corresponding program that has been developed. The computing results show themedium diameter orientation is unreliable, especially under the interference of an outer forcecouple. Under such working conditions, the circumferential traction distribution on the screw teethis extremely uneven, which is the main reason for the destruction and short life time ofscrew-pairs. When utilizing the same precision (the relative tolerance is 10X10^(-5)), themultipole-BEM uses almost the same CPU time as used by the FEM, but the needed computer memory sizeis only one eightieth of that needed by the FEM (10 MB vs. 800 MB). The multipole-BEM is well suitedfor computing large-scale engineering problems.展开更多
There exist three types of nonlinear problems in large deformation processes of deep softrock engineering, i.e., nonlin- earity caused by material, geometrical and contact boundary. In this paper, the numerical method...There exist three types of nonlinear problems in large deformation processes of deep softrock engineering, i.e., nonlin- earity caused by material, geometrical and contact boundary. In this paper, the numerical method to tackle the nonlinear eontact and large deformation problem in A Software on Large Deformation Analysis for Soft Rock Engineering at Great Depth was presented. In the software, based on Lagrange multiplier method and Coulomb friction law, kinematic constraints on contact boundaries were introduced in functional function, and the finite element equations was established for two incremental large deformation analyses models, polar decomposition model and additive decomposition model. For every incremental loading step, by searching for the contact points in the potential contact interfaces (the excavation boundaries), the Lagrange multipliers, i.e., contact forces are cal- culated iteratively by Gauss-Seidel method, and justified through satisfy the inequalities of static constraint on contact boundaries. With the software, large deformation and frictional contact of a transport roadway were analyzed numerically by the two models. The numerical examples demonstrated the efficiency of the method used in the software.展开更多
Thermal damage caused by frictional heat of rolling-sliding contact is one of the most important failure forms of wheel and rail. Many studies of wheel-rail frictional heating have been devoted to the temperature fiel...Thermal damage caused by frictional heat of rolling-sliding contact is one of the most important failure forms of wheel and rail. Many studies of wheel-rail frictional heating have been devoted to the temperature field, but few literatures focus on wheel-rail thermal stress caused by frictional heating. However, the wheel-rail creepage is one of important influencing factors of the thermal stress In this paper, a thermo-mechanical coupling model of wheel-rail rolling-sliding contact is developed using thermo-elasto-plastic finite element method. The effect of the wheel-rail elastic creepage on the distribution of heat flux is investigated using the numerical model in which the temperature-dependent material properties are taken into consideration. The moving wheel-rail contact force and the frictional heating are used to simulate the wheel rolling on the rail. The effect of the creepage on the temperature rise, thermal strain, residual stress and residual strain under wheel-rail sliding-rolling contact are investigated. The investigation results show that the thermally affected zone exists mainly in a very thin layer of material near the rail contact surface during the rolling-sliding contact. Both the temperature and thermal strain of rail increase with increasing creepage. The residual stresses induced by the frictional heat in the surface layer of rail appear to be tensile. When the creepage is large, the frictional heat has a significant influence on the residual stresses and residual strains of rail. This paper develops a thermo-meehanical coupling model of wheel-rail rolling-sliding contact, and the obtained results can help to understand the mechanism of wheel/rail frictional thermal fatigue.展开更多
A new algorithm for solving the three-dimensional elastic contact problem with friction is presented. The algorithm is a non-interior smoothing algorithm based on an NCP-function. The parametric variational principle ...A new algorithm for solving the three-dimensional elastic contact problem with friction is presented. The algorithm is a non-interior smoothing algorithm based on an NCP-function. The parametric variational principle and parametric quadratic programming method were applied to the analysis of three-dimensional frictional contact problem. The solution of the contact problem was finally reduced to a linear complementarity problem, which was reformulated as a system of nonsmooth equations via an NCP-function. A smoothing approximation to the nonsmooth equations was given by the aggregate function. A Newton method was used to solve the resulting smoothing nonlinear equations. The algorithm presented is easy to understand and implement. The reliability and efficiency of this algorithm are demonstrated both by the numerical experiments of LCP in mathematical way and the examples of contact problems in mechanics.展开更多
We propose a model based on extreme value statistics(EVS) and combine it with different models for single-asperity contact, including adhesive and elasto-plastic contacts, to derive a relation between the applied load...We propose a model based on extreme value statistics(EVS) and combine it with different models for single-asperity contact, including adhesive and elasto-plastic contacts, to derive a relation between the applied load and the friction force on a rough interface. We determine that, when the summit distribution is Gumbel and the contact model is Hertzian, we obtain the closest conformity with Amonton’s law. The range over which Gumbel distribution mimics Amonton’s law is wider than that of the Greenwood–Williamson(GW) model. However, exact conformity with Amonton’s law is not observed for any of the well-known EVS distributions. Plastic deformations in the contact area reduce the relative change in pressure slightly with Gumbel distribution. Interestingly, when elasto-plastic contact is assumed for the asperities, together with Gumbel distribution for summits, the best conformity with Amonton’s law is achieved. Other extreme value statistics are also studied, and the results are presented. We combine Gumbel distribution with the GW–McC ool model, which is an improved version of the GW model, and the new model considers a bandwidth for wavelengths α. Comparisons of this model with the original GW–McCool model and other simplified versions of the Bush–Gibson–Thomas theory reveal that Gumbel distribution has a better conformity with Amonton’s law for all values of α. When the adhesive contact model is used, the main observation is that there is some friction for zero or even negative applied load. Asperities with a height even less than the separation between the two surfaces are in contact. For a small value of the adhesion parameter, a better conformity with Amonton’s law is observed. The relative pressure increases for stronger adhesion, which indicates that adhesion-controlled friction is dominated by load-controlled friction. We also observe that adhesion increases on a surface with a lower value of roughness.展开更多
Corner contact in gear pair causes vibration and noise,which has attracted many attentions.However,teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechan...Corner contact in gear pair causes vibration and noise,which has attracted many attentions.However,teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechanism of teeth impact friction in the current researches.Based on the mechanism of corner contact,the process of corner contact is divided into two stages of impact and scratch,and the calculation model including gear equivalent error-combined deformation is established along the line of action.According to the distributive law,gear equivalent error is synthesized by base pitch error,normal backlash and tooth profile modification on the line of action.The combined tooth compliance of the first point lying in corner contact before the normal path is inversed along the line of action,on basis of the theory of engagement and the curve of tooth synthetic complianceload-history.Combined secondarily the equivalent error with the combined deflection,the position standard of the point situated at corner contact is probed.Then the impact positions and forces,from the beginning to the end during corner contact before the normal path,are calculated accurately.Due to the above results,the lash model during corner contact is founded,and the impact force and frictional coefficient are quantified.A numerical example is performed and the averaged impact friction coefficient based on the presented calculation method is validated.This research obtains the results which could be referenced to understand the complex mechanism of teeth impact friction and quantitative calculation of the friction force and coefficient,and to gear exact design for tribology.展开更多
A new node-pairs contact algorithm is proposed to deal with a composite material or bi-material interface crack face contact and friction problem (e.g., resistant coating and thermal barrier coatings) subjected to c...A new node-pairs contact algorithm is proposed to deal with a composite material or bi-material interface crack face contact and friction problem (e.g., resistant coating and thermal barrier coatings) subjected to complicated load conditions. To decrease the calculation scale and calculation errors, the local Lagrange multipliers are solved only on a pair of contact nodes using the Jacobi iteration method, and the constraint modification of the tangential multipliers are required. After the calculation of the present node-pairs Lagrange multiplier, it is turned to next contact node-pairs until all node-pairs have finished. Compared with an ordinary contact algorithm, the new local node-pairs contact algorithm is allowed a more precise element on the contact face without the stiffness matrix singularity. The stress intensity factors (SIFs) and the contact region of an infinite plate central crack are calculated and show good agreement with those in the literature. The contact zone near the crack tip as well as its influence on singularity of stress fields are studied. Furthermore, the frictional contacts are also considered and found to have a significant influence on the SIFs. The normalized mode-II stress intensity factors KII for the friction coefficient decrease by 16% when f changes from 1 to 0.展开更多
Transmission of elastic waves through a micro gap between two solids with consideration of frictional contact is investigated. By using the Fourier analysis technique and the corrective solution method, the nonlinear ...Transmission of elastic waves through a micro gap between two solids with consideration of frictional contact is investigated. By using the Fourier analysis technique and the corrective solution method, the nonlinear boundary problem is reduced to a set of algebraic equations. Numerical results exhibit the locations and extents of separation, slip, and stick zones, the interface tractions, and the energy partition. The effects of gap width, frictional coefficients, and the incident angle on the wave transmission are discussed in detail. The results show that higher harmonics are generated due to the local contact/slip at the interface.展开更多
Based on elementary group theory, the block pivot methods for solving two-dimensional elastic frictional contact problems are presented in this paper. It is proved that the algorithms converge within a finite number o...Based on elementary group theory, the block pivot methods for solving two-dimensional elastic frictional contact problems are presented in this paper. It is proved that the algorithms converge within a finite number of steps when the friction coefficient is ''relative small''. Unlike most mathematical programming methods for contact problems, the block pivot methods permit multiple exchanges of basic and nonbasic variables.展开更多
The solution of 3 D elastic-plastic frictional contact problems belongs to the un specified boundary problems where the interaction between two kinds of nonlinearities should occur. Considering the difficulties for th...The solution of 3 D elastic-plastic frictional contact problems belongs to the un specified boundary problems where the interaction between two kinds of nonlinearities should occur. Considering the difficulties for the solution of 3 D frictional contact problems, the key part is the determination of the tangential slip states at the contact points, and a great amount of computing work is needed for a high accuracy result. A new method based on a combination of programming and iteration methods, which are respectively known as two main kinds of methods for contact analysis, was put forward to deal with 3 D elastic-plastic contact problems. Numerical results demonstrate the efficiency of the algorithm illustrated here.展开更多
The effects of different contact interfaces on the friction characteristics of OTS self-assembled monolayers were investigated by a universal micro-tribometer in different sliding velocities. The results indicate that...The effects of different contact interfaces on the friction characteristics of OTS self-assembled monolayers were investigated by a universal micro-tribometer in different sliding velocities. The results indicate that there exist lower friction coefficients between OTS SAMs and Ti, Ni and Cu films deposited on GCr15 steel balls than those between OTS SAMs and GCr15 steel ball. The friction coefficient between OTS SAMs and Ti film is the largest, and the friction coefficient between OTS SAMs and Cu film is the least in these three films, which depends on the intrinsic characteristics of the materials. The friction coefficients between OTS SAMs and GCr15 steel ball and three nanometer films increase with the sliding velocity increasing, which can be explained by the relaxation characteristics of OTS molecules.展开更多
Boundary element-linear complementary equations are formulated to solve elastic contact problems with Coulomb frictions.It is also a new attempt to solve free boundary problems in solid mechanics by means of boundary ...Boundary element-linear complementary equations are formulated to solve elastic contact problems with Coulomb frictions.It is also a new attempt to solve free boundary problems in solid mechanics by means of boundary element-mathematical programming techniques.展开更多
A dynamic contact problem for elastic-viscoplastic materials with thermal effects is investigated. The contact is bilateral, and the friction is modeled with Tresca's friction law with heat exchange. A variational fo...A dynamic contact problem for elastic-viscoplastic materials with thermal effects is investigated. The contact is bilateral, and the friction is modeled with Tresca's friction law with heat exchange. A variational formulation of the model is derived, and the existence of a unique weak solution is proved. The proofs are based on the classical result of nonlinear first order evolution inequalities, the equations with monotone operators, and the fixed point arguments. Finally, the continuous dependence of the solution on the friction yield limit is studied.展开更多
According to the thermodynamic characteristics in the work interface of the plastic forming of metals, a set of TCR (thermal contact resistance) experimental system under the conditions of high temperature and high pr...According to the thermodynamic characteristics in the work interface of the plastic forming of metals, a set of TCR (thermal contact resistance) experimental system under the conditions of high temperature and high pressure has been designed. The interrelations between the thermal contact resistance (TCR) and its influence factors such as contact pressure etc, are obtained. A modified coefficient E is introduced to consider the relative slide in the contact interface. Then the interfacial TCR calculating model, which suits to the special conditions of `high temperature+plastic rheology’ and frictional contact such as continuous roll casting process, is established.展开更多
Performances of ultrasonic motor (USM) considerably depend on contact state between stator and rotor.Based on an electric contact method,the effects of thickness of single homogeneous friction material and gradient fr...Performances of ultrasonic motor (USM) considerably depend on contact state between stator and rotor.Based on an electric contact method,the effects of thickness of single homogeneous friction material and gradient friction material on contact state between stator and rotor were studied.The relative contact length was employed to describe the contact characteristics of stator and rotor.With the decrease of thickness of friction material,the contact characteristic of stator and rotor were analyzed and compared when single homogeneous friction material and gradient friction material were used.The experimental results showed that the effect of gradient friction material on contact characteristic is smaller than that of single homogeneous friction material when the thickness of friction material decreases.The result can provide experimental guidance for design and choosing of friction material for USM.展开更多
Based on the theory and technique of nonlinear geometric field theory of continuum, a more general incremental variational equation for elastic and plastic large deformation in co-moving coordinate is established in t...Based on the theory and technique of nonlinear geometric field theory of continuum, a more general incremental variational equation for elastic and plastic large deformation in co-moving coordinate is established in this paper. An expression for two and three-ditnensicnal continua is derived, and the incremental variational equation for large deformation of changing boundary contact and the variational inequality in rate form tire obtained, which provides the theoretical basis for the computation of elastic-plastic large deformation contact problem with friction.展开更多
The boundary element method in framework is given to evaluate three dimensional frictional contact problems. Elasto plastic material behavior is taken into account by mean of an initial stress formulation and Von Mis...The boundary element method in framework is given to evaluate three dimensional frictional contact problems. Elasto plastic material behavior is taken into account by mean of an initial stress formulation and Von Mises yield criterion. The amount of tangential traction at contact surface is limited by Coulomb's friction law and constant shear rule. From some numerical results of a plate rolling problem, it is demonstrated here that the BEM can be used to efficiently and accurately analyze this class of forming problems.展开更多
文摘A simple interface element for analyzing contact friction problems is developed. Taking nodal displacements and contact stresses as unknowns, this element can simulate frictional slippage, decoupling and re-bonding of two bodies initially mating or having gaps at a common interface. The method is based on the Finite Element Method and load incremental theory. The geometric and static constraint conditions on contact surfaces are treated as additional conditions and are included in stiffness equations. This simple element has the advantages of easy implementation into standard finite element programs and fast speed for convergence as well as high accuracy for stress distribution in interface. Undesirable stress oscillations are also investigated whenever large stress gradients exist over the contact surfaces. Exact integration or the conventional Gauss integration scheme used to evaluate the interpolation function matrix of the interface element is found to be the source of the oscillations. Eigenmode analysis demonstrates that the stress behavior of an interface element can be improved by using the Newton-Cotes integration scheme. Finally, the test example of a strip footing problem is presented.
基金National Natural Science Foundation of China(No.51275369)
文摘To evaluate the dynamic behavior of a container crane under seismic loads accurately,the contact state between the wheels and the rails or the ground that significantly affect the seismic response of the structure must be considered elaborately.This paper has proposed a modeling method based on the theory of contact and friction for simulating the nonlinear seismic response of large and flexible structure of a jumbo movable container crane,including the contact problem regarding the wheels attached to the bottom of its legs and the rails on which they ride.These models are used to perform extensive dynamic time-history analysis in order to find out their nonlinear dynamic behavior under various excitation modes.It is found that the presented numerical modeling method simulates the nonlinear seismic response of a container crane quite well.Notably,it can verify and expand our understanding of the seismic behaviors by evaluating response performance for the large seaport cranes.
文摘In this paper,a frictional contact problem between an electro-elastic body and an electrically conductive foundation is studied.The contact is modeled by normal compliance with finite penetration and a version of Coulomb’s law of dry friction in which the coefficient of friction depends on the slip.In addition,the effects of the electrical conductivity of the foundation are taken into account.This model leads to a coupled system of the quasi-variational inequality of the elliptic type for the displacement and the nonlinear variational equation for the electric potential.The existence of a weak solution is proved by using an abstract result for elliptic variational inequalities and a fixed point argument.Then,a finite element approximation of the problem is presented.Under some regularity conditions,an optimal order error estimate of the approximate solution is derived.Finally,a successive iteration technique is used to solve the problem numerically and a convergence result is established.
基金This project is supported by National Natural Science Foundation of China(No.50075075) National "Ten-Five" Science and Technology Project of China(No.ZZ 01-13A-02-02-03). J
文摘The 3-D traction field in the pressure screw-pair of a 3 500 heavy and mediumplate mill press down system is successfully calculated by applying the 3-D frictional contactmultipole-BEM and the corresponding program that has been developed. The computing results show themedium diameter orientation is unreliable, especially under the interference of an outer forcecouple. Under such working conditions, the circumferential traction distribution on the screw teethis extremely uneven, which is the main reason for the destruction and short life time ofscrew-pairs. When utilizing the same precision (the relative tolerance is 10X10^(-5)), themultipole-BEM uses almost the same CPU time as used by the FEM, but the needed computer memory sizeis only one eightieth of that needed by the FEM (10 MB vs. 800 MB). The multipole-BEM is well suitedfor computing large-scale engineering problems.
基金subsidized by special funds for the National Basic Research Program of China (No.2002cb412708)supported by the Opening Funds of the State Key Laboratory of Hydroscience and Engineering of China (No.sklhse-2007-D-02)
文摘There exist three types of nonlinear problems in large deformation processes of deep softrock engineering, i.e., nonlin- earity caused by material, geometrical and contact boundary. In this paper, the numerical method to tackle the nonlinear eontact and large deformation problem in A Software on Large Deformation Analysis for Soft Rock Engineering at Great Depth was presented. In the software, based on Lagrange multiplier method and Coulomb friction law, kinematic constraints on contact boundaries were introduced in functional function, and the finite element equations was established for two incremental large deformation analyses models, polar decomposition model and additive decomposition model. For every incremental loading step, by searching for the contact points in the potential contact interfaces (the excavation boundaries), the Lagrange multipliers, i.e., contact forces are cal- culated iteratively by Gauss-Seidel method, and justified through satisfy the inequalities of static constraint on contact boundaries. With the software, large deformation and frictional contact of a transport roadway were analyzed numerically by the two models. The numerical examples demonstrated the efficiency of the method used in the software.
基金supported by National Natural Science Foundation of China(Grant Nos.51175438,U1134202)National Science and Technology Support Program of China(Grant No.2009BAG12A01)Program for New Century Excellent Talents in University of China(Grant No.NCET-08-0824)
文摘Thermal damage caused by frictional heat of rolling-sliding contact is one of the most important failure forms of wheel and rail. Many studies of wheel-rail frictional heating have been devoted to the temperature field, but few literatures focus on wheel-rail thermal stress caused by frictional heating. However, the wheel-rail creepage is one of important influencing factors of the thermal stress In this paper, a thermo-mechanical coupling model of wheel-rail rolling-sliding contact is developed using thermo-elasto-plastic finite element method. The effect of the wheel-rail elastic creepage on the distribution of heat flux is investigated using the numerical model in which the temperature-dependent material properties are taken into consideration. The moving wheel-rail contact force and the frictional heating are used to simulate the wheel rolling on the rail. The effect of the creepage on the temperature rise, thermal strain, residual stress and residual strain under wheel-rail sliding-rolling contact are investigated. The investigation results show that the thermally affected zone exists mainly in a very thin layer of material near the rail contact surface during the rolling-sliding contact. Both the temperature and thermal strain of rail increase with increasing creepage. The residual stresses induced by the frictional heat in the surface layer of rail appear to be tensile. When the creepage is large, the frictional heat has a significant influence on the residual stresses and residual strains of rail. This paper develops a thermo-meehanical coupling model of wheel-rail rolling-sliding contact, and the obtained results can help to understand the mechanism of wheel/rail frictional thermal fatigue.
文摘A new algorithm for solving the three-dimensional elastic contact problem with friction is presented. The algorithm is a non-interior smoothing algorithm based on an NCP-function. The parametric variational principle and parametric quadratic programming method were applied to the analysis of three-dimensional frictional contact problem. The solution of the contact problem was finally reduced to a linear complementarity problem, which was reformulated as a system of nonsmooth equations via an NCP-function. A smoothing approximation to the nonsmooth equations was given by the aggregate function. A Newton method was used to solve the resulting smoothing nonlinear equations. The algorithm presented is easy to understand and implement. The reliability and efficiency of this algorithm are demonstrated both by the numerical experiments of LCP in mathematical way and the examples of contact problems in mechanics.
文摘We propose a model based on extreme value statistics(EVS) and combine it with different models for single-asperity contact, including adhesive and elasto-plastic contacts, to derive a relation between the applied load and the friction force on a rough interface. We determine that, when the summit distribution is Gumbel and the contact model is Hertzian, we obtain the closest conformity with Amonton’s law. The range over which Gumbel distribution mimics Amonton’s law is wider than that of the Greenwood–Williamson(GW) model. However, exact conformity with Amonton’s law is not observed for any of the well-known EVS distributions. Plastic deformations in the contact area reduce the relative change in pressure slightly with Gumbel distribution. Interestingly, when elasto-plastic contact is assumed for the asperities, together with Gumbel distribution for summits, the best conformity with Amonton’s law is achieved. Other extreme value statistics are also studied, and the results are presented. We combine Gumbel distribution with the GW–McC ool model, which is an improved version of the GW model, and the new model considers a bandwidth for wavelengths α. Comparisons of this model with the original GW–McCool model and other simplified versions of the Bush–Gibson–Thomas theory reveal that Gumbel distribution has a better conformity with Amonton’s law for all values of α. When the adhesive contact model is used, the main observation is that there is some friction for zero or even negative applied load. Asperities with a height even less than the separation between the two surfaces are in contact. For a small value of the adhesion parameter, a better conformity with Amonton’s law is observed. The relative pressure increases for stronger adhesion, which indicates that adhesion-controlled friction is dominated by load-controlled friction. We also observe that adhesion increases on a surface with a lower value of roughness.
基金Supported by National Science Foundation of China(Grant No.51275160)National Science Foundation of China(Grant No.51305462)National Key Basic Research Program of China(973 Program,Grant No.2010CB832700)
文摘Corner contact in gear pair causes vibration and noise,which has attracted many attentions.However,teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechanism of teeth impact friction in the current researches.Based on the mechanism of corner contact,the process of corner contact is divided into two stages of impact and scratch,and the calculation model including gear equivalent error-combined deformation is established along the line of action.According to the distributive law,gear equivalent error is synthesized by base pitch error,normal backlash and tooth profile modification on the line of action.The combined tooth compliance of the first point lying in corner contact before the normal path is inversed along the line of action,on basis of the theory of engagement and the curve of tooth synthetic complianceload-history.Combined secondarily the equivalent error with the combined deflection,the position standard of the point situated at corner contact is probed.Then the impact positions and forces,from the beginning to the end during corner contact before the normal path,are calculated accurately.Due to the above results,the lash model during corner contact is founded,and the impact force and frictional coefficient are quantified.A numerical example is performed and the averaged impact friction coefficient based on the presented calculation method is validated.This research obtains the results which could be referenced to understand the complex mechanism of teeth impact friction and quantitative calculation of the friction force and coefficient,and to gear exact design for tribology.
基金supported by the National Basic Research Program of China(Grant No.2012CB026200)the National Natural Science Foundation of China(Grant No.50878048)
文摘A new node-pairs contact algorithm is proposed to deal with a composite material or bi-material interface crack face contact and friction problem (e.g., resistant coating and thermal barrier coatings) subjected to complicated load conditions. To decrease the calculation scale and calculation errors, the local Lagrange multipliers are solved only on a pair of contact nodes using the Jacobi iteration method, and the constraint modification of the tangential multipliers are required. After the calculation of the present node-pairs Lagrange multiplier, it is turned to next contact node-pairs until all node-pairs have finished. Compared with an ordinary contact algorithm, the new local node-pairs contact algorithm is allowed a more precise element on the contact face without the stiffness matrix singularity. The stress intensity factors (SIFs) and the contact region of an infinite plate central crack are calculated and show good agreement with those in the literature. The contact zone near the crack tip as well as its influence on singularity of stress fields are studied. Furthermore, the frictional contacts are also considered and found to have a significant influence on the SIFs. The normalized mode-II stress intensity factors KII for the friction coefficient decrease by 16% when f changes from 1 to 0.
基金Project supported by the National Natural Science Foundation of China(No.10772022)
文摘Transmission of elastic waves through a micro gap between two solids with consideration of frictional contact is investigated. By using the Fourier analysis technique and the corrective solution method, the nonlinear boundary problem is reduced to a set of algebraic equations. Numerical results exhibit the locations and extents of separation, slip, and stick zones, the interface tractions, and the energy partition. The effects of gap width, frictional coefficients, and the incident angle on the wave transmission are discussed in detail. The results show that higher harmonics are generated due to the local contact/slip at the interface.
基金The project supported by the National Natural Science Foundation of China
文摘Based on elementary group theory, the block pivot methods for solving two-dimensional elastic frictional contact problems are presented in this paper. It is proved that the algorithms converge within a finite number of steps when the friction coefficient is ''relative small''. Unlike most mathematical programming methods for contact problems, the block pivot methods permit multiple exchanges of basic and nonbasic variables.
基金theNationalKeyBasicResearchSpecialFoundation (G1 9990 3 2 80 5 ) the FoundationforUniversityKeyTeacherbytheMinistryofEducationo
文摘The solution of 3 D elastic-plastic frictional contact problems belongs to the un specified boundary problems where the interaction between two kinds of nonlinearities should occur. Considering the difficulties for the solution of 3 D frictional contact problems, the key part is the determination of the tangential slip states at the contact points, and a great amount of computing work is needed for a high accuracy result. A new method based on a combination of programming and iteration methods, which are respectively known as two main kinds of methods for contact analysis, was put forward to deal with 3 D elastic-plastic contact problems. Numerical results demonstrate the efficiency of the algorithm illustrated here.
文摘The effects of different contact interfaces on the friction characteristics of OTS self-assembled monolayers were investigated by a universal micro-tribometer in different sliding velocities. The results indicate that there exist lower friction coefficients between OTS SAMs and Ti, Ni and Cu films deposited on GCr15 steel balls than those between OTS SAMs and GCr15 steel ball. The friction coefficient between OTS SAMs and Ti film is the largest, and the friction coefficient between OTS SAMs and Cu film is the least in these three films, which depends on the intrinsic characteristics of the materials. The friction coefficients between OTS SAMs and GCr15 steel ball and three nanometer films increase with the sliding velocity increasing, which can be explained by the relaxation characteristics of OTS molecules.
文摘Boundary element-linear complementary equations are formulated to solve elastic contact problems with Coulomb frictions.It is also a new attempt to solve free boundary problems in solid mechanics by means of boundary element-mathematical programming techniques.
文摘A dynamic contact problem for elastic-viscoplastic materials with thermal effects is investigated. The contact is bilateral, and the friction is modeled with Tresca's friction law with heat exchange. A variational formulation of the model is derived, and the existence of a unique weak solution is proved. The proofs are based on the classical result of nonlinear first order evolution inequalities, the equations with monotone operators, and the fixed point arguments. Finally, the continuous dependence of the solution on the friction yield limit is studied.
文摘According to the thermodynamic characteristics in the work interface of the plastic forming of metals, a set of TCR (thermal contact resistance) experimental system under the conditions of high temperature and high pressure has been designed. The interrelations between the thermal contact resistance (TCR) and its influence factors such as contact pressure etc, are obtained. A modified coefficient E is introduced to consider the relative slide in the contact interface. Then the interfacial TCR calculating model, which suits to the special conditions of `high temperature+plastic rheology’ and frictional contact such as continuous roll casting process, is established.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50975057)the National Basic Research Program of China(Grant No.2007CB607602)
文摘Performances of ultrasonic motor (USM) considerably depend on contact state between stator and rotor.Based on an electric contact method,the effects of thickness of single homogeneous friction material and gradient friction material on contact state between stator and rotor were studied.The relative contact length was employed to describe the contact characteristics of stator and rotor.With the decrease of thickness of friction material,the contact characteristic of stator and rotor were analyzed and compared when single homogeneous friction material and gradient friction material were used.The experimental results showed that the effect of gradient friction material on contact characteristic is smaller than that of single homogeneous friction material when the thickness of friction material decreases.The result can provide experimental guidance for design and choosing of friction material for USM.
文摘Based on the theory and technique of nonlinear geometric field theory of continuum, a more general incremental variational equation for elastic and plastic large deformation in co-moving coordinate is established in this paper. An expression for two and three-ditnensicnal continua is derived, and the incremental variational equation for large deformation of changing boundary contact and the variational inequality in rate form tire obtained, which provides the theoretical basis for the computation of elastic-plastic large deformation contact problem with friction.
文摘The boundary element method in framework is given to evaluate three dimensional frictional contact problems. Elasto plastic material behavior is taken into account by mean of an initial stress formulation and Von Mises yield criterion. The amount of tangential traction at contact surface is limited by Coulomb's friction law and constant shear rule. From some numerical results of a plate rolling problem, it is demonstrated here that the BEM can be used to efficiently and accurately analyze this class of forming problems.