期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
A METHOD FOR THE ANALYSIS OF DYNAMIC RESPONSE OF STRUCTURE CONTAINING NON-SMOOTH CONTACTABLE INTERFACES 被引量:3
1
作者 刘晶波 刘书 杜修力 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1999年第1期63-72,共10页
A novel single-step method is proposed for the analysis of dynamic response of visco-elastic structures containing non-smooth contactable interfaces. In the method, a two-level algorithm is employed for dealing with a... A novel single-step method is proposed for the analysis of dynamic response of visco-elastic structures containing non-smooth contactable interfaces. In the method, a two-level algorithm is employed for dealing with a nonlinear boundary condition caused by the dynamic contact of interfaces. At the first level, an explicit method is adopted to calculate nodal displacements of global viscoelastic system without considering the effect of dynamic contact of interfaces and at the second level, by introducing contact conditions of interfaces, a group of equations of lower order is derived to calculate dynamic contact normal and shear forces on the interfaces. The method is convenient and efficient for the analysis of problems of dynamic contact. The accuracy of the method is of the second order and the numerical stability condition is wider than that of other explicit methods. 展开更多
关键词 non-smooth contactable interfaces visco-elastic structure dynamic response
下载PDF
Predicting impact forces on pipelines from deep-sea fluidized slides:A comprehensive review of key factors
2
作者 Xingsen Guo Ning Fan +5 位作者 Defeng Zheng Cuiwei Fu Hao Wu Yanjun Zhang Xiaolong Song Tingkai Nian 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期211-225,共15页
Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on ... Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on the seabed surface exposes them to potential risks arising from the complex deep-sea hydrodynamic and geological environment,particularly submarine slides.Historical incidents have highlighted the substantial damage to pipelines due to slides.Specifically,deep-sea fluidized slides(in a debris/mud flow or turbidity current physical state),characterized by high speed,pose a significant threat.Accurately assessing the impact forces exerted on pipelines by fluidized submarine slides is crucial for ensuring pipeline safety.This study aimed to provide a comprehensive overview of recent advancements in understanding pipeline impact forces caused by fluidized deep-sea slides,thereby identifying key factors and corresponding mechanisms that influence pipeline impact forces.These factors include the velocity,density,and shear behavior of deep-sea fluidized slides,as well as the geometry,stiffness,self-weight,and mechanical model of pipelines.Additionally,the interface contact conditions and spatial relations were examined within the context of deep-sea slides and their interactions with pipelines.Building upon a thorough review of these achievements,future directions were proposed for assessing and characterizing the key factors affecting slide impact loading on pipelines.A comprehensive understanding of these results is essential for the sustainable development of deep-sea pipeline projects associated with seabed resource development and the implementation of disaster prevention measures. 展开更多
关键词 Deep-sea fluidized slides Pipes Impact forces Shear behavior of slides Interface contact conditions Spatial relation
下载PDF
Current advancements on charge selective contact interfacial layers and electrodes in flexible hybrid perovskite photovoltaics 被引量:2
3
作者 Gopalan Saianand Prashant Sonar +7 位作者 Gregory J.Wilson Anantha-Iyengar Gopalan Vellaisamy A.L.Roy Gautam E.Unni Khan Mamun Reza Behzad Bahrami K.Venkatramanan Qiquan Qiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期151-173,共23页
Perovskite-based photovoltaic materials have been attracting attention for their strikingly improved performance at converting sunlight into electricity.The beneficial and unique optoelectronic characteristics of pero... Perovskite-based photovoltaic materials have been attracting attention for their strikingly improved performance at converting sunlight into electricity.The beneficial and unique optoelectronic characteristics of perovskite structures enable researchers to achieve an incredibly remarkable power conversion efficiency.Flexible hybrid perovskite photovoltaics promise emerging applications in a myriad of optoelectronic and wearable/portable device applications owing to their inherent intriguing physicochemical and photophysical properties which enabled researchers to take forward advanced research in this growing field.Flexible perovskite photovoltaics have attracted significant attention owing to their fascinating material properties with combined merits of high efficiency,light-weight,flexibility,semitransparency,compatibility towards roll-to-roll printing,and large-area mass-scale production.Flexible perovskite-based solar cells comprise of 4 key components that include a flexible substrate,semi-transparent bottom contact electrode,perovskite(light absorber layer)and charge transport(electron/hole)layers and top(usually metal)electrode.Among these components,interfacial layers and contact electrodes play a pivotal role in influencing the overall photovoltaic performance.In this comprehensive review article,we focus on the current developments and latest progress achieved in perovskite photovoltaics concerning the charge selective transport layers/electrodes toward the fabrication of highly stable,efficient flexible devices.As a concluding remark,we briefly summarize the highlights of the review article and make recommendations for future outlook and investigation with perspectives on the perovskite-based optoelectronic functional devices that can be potentially utilized in smart wearable and portable devices. 展开更多
关键词 Perovskite photovoltaics Charge transport layers contact interface layer contact electrodes Printable electronics
下载PDF
Relationship between the real contact area and contact force in pre-sliding regime 被引量:2
4
作者 宋保江 阎绍泽 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第7期212-217,共6页
The pre-sliding regime is typically neglected in the dynamic modelling of mechanical systems. However, the change in contact state caused by static friction may decrease positional accuracy and control precision. To i... The pre-sliding regime is typically neglected in the dynamic modelling of mechanical systems. However, the change in contact state caused by static friction may decrease positional accuracy and control precision. To investigate the relationship between contact status and contact force in pre-sliding friction, an optical experimental method is presented in this paper.With this method, the real contact state at the interface of a transparent material can be observed based on the total reflection principle of light by using an image processing technique. A novel setup, which includes a pair of rectangular trapezoidal blocks, is proposed to solve the challenging issue of accurately applying different tangential and normal forces to the contact interface. The improved Otsu's method is used for measurement. Through an experimental study performed on polymethyl methacrylate(PMMA), the quantity of contact asperities is proven to be the dominant factor that affects the real contact area. The relationship between the real contact area and the contact force in the pre-sliding regime is studied, and the distribution of static friction at the contact interface is qualitatively discussed. New phenomena in which the real contact area expands along with increasing static friction are identified. The aforementioned relationship is approximately linear at the contact interface under a constant normal pressure, and the distribution of friction stress decreases from the leading edge to the trailing edge. 展开更多
关键词 real contact area contact interface pre-sliding regime contact force
下载PDF
BODY PRESSURE DISTRIBUTION OF AUTOMOBILE DRIVING HUMAN MACHINE CONTACT INTERFACE 被引量:1
5
作者 CHEN Juan HONG Jun ZHANG E LIANG Jian LU Bingheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第4期66-70,共5页
Aiming at the fatigue and comfort issues of human-machine contact interface in automobile driving and based on physiological and anatomical principle, the physiological and biochemical process of muscles and nerves in... Aiming at the fatigue and comfort issues of human-machine contact interface in automobile driving and based on physiological and anatomical principle, the physiological and biochemical process of muscles and nerves in the formation and development of fatigue is analyzed systematically. The fatigue-causing physiological characteristic indexes are mapped to biomechanical indexes like muscle stress-strain, the compression deformation of blood vessels and nerves etc. from the perspective of formation mechanism. The geometrical model of skeleton and parenchyma is established by applying CT-scanned body data and MRI images. The general rule of comfort body pressure distribution is acquired through the analysis of anatomical structure of buttocks and femoral region. The comprehensive test platform for sitting comfort of 3D adjustable contact interface is constructed. The test of body pressure distribution of human-machine contact interface and its comparison with subjective evaluation indicates that the biomechanical indexes of automobile driving human-machine contact interface and body pressure distribution rule studied can effectively evaluate the fatigue and comfort issues of human-machine contact interface and provide theoretical basis for the optimal design of human-machine contact interface. 展开更多
关键词 BIOMECHANICS contact interface FATIGUE Body pressure distribution
下载PDF
Modeling Methods and Test Verification of Root Insert Contact Interface for Wind Turbine Blade 被引量:1
6
作者 Li Hui Wang Tongguang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第1期9-15,共7页
Two modeling methods of the root insert for wind turbine blade are presented,i.e.,the local mesh optimization method(LMOM)and the global modeling method(GMM).Based on the optimized mesh of the local model for the meta... Two modeling methods of the root insert for wind turbine blade are presented,i.e.,the local mesh optimization method(LMOM)and the global modeling method(GMM).Based on the optimized mesh of the local model for the metal contact interface,LMOM is proposed to analyze the load path and stress distribution characteristics,while GMM is used to calculate and analyze the stress distribution characteristics of the resin layer established between the bushing and composite layers of root insert.To validate the GMM,a tension test is carried out.The result successfully shows that the shear strain expresses a similar strain distribution tendency with the GMM′s results. 展开更多
关键词 root insert modeling methods mesh optimization contact interface tension test
下载PDF
Diamond Film Synthesis with a DC Plasma Jet:Effect of the Contacting Interface between Substrate and Base on the Substrate Temperature 被引量:1
7
作者 Rongfa CHEN Dunwen ZUO +2 位作者 Feng XU Duoseng LI Min WANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第4期495-498,共4页
The contacting interface between the substrate and water-cooled base is vital to the substrate temperature during diamond films deposition by a DC (direct current) plasma jet. The effects of the solid contacting are... The contacting interface between the substrate and water-cooled base is vital to the substrate temperature during diamond films deposition by a DC (direct current) plasma jet. The effects of the solid contacting area,conductive materials and fixing between the substrate and the base were investigated without affecting the other parameters. Experimental results indicated that the preferable solid contacting area was more than 60% of total contacting areal; the particular Sn-Pb alloy was more suitable for conducting heat and the concentric fixing ring was a better setting for controlling the substrate temperature. The result was explained in terms of the variable thermal contact resistance at the interface between substrate and base. The diamond films were analyzed by scanning electron microscopy (SEM) for morphology, X-ray diffraction (XRD) for the intensity of characteristic spectroscopy and Raman spectroscopy for structure. 展开更多
关键词 Diamond film Substrate temperature contacting interface DC arc plasma jet
下载PDF
Experimental analysis of interface contact behavior using a novel image processing method
8
作者 韩靖宇 罗治军 +1 位作者 张玉玲 阎绍泽 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第5期412-423,共12页
The spatial and temporal evolution of real contact area of contact interface with loads is a challenge.It is generally believed that there is a positive linear correlation between real contact area and normal load.How... The spatial and temporal evolution of real contact area of contact interface with loads is a challenge.It is generally believed that there is a positive linear correlation between real contact area and normal load.However,with the development of measuring instruments and methods,some scholars have found that the growth rate of real contact area will slow down with the increase of normal load under certain conditions,such as large-scale interface contact with small roughness surface,which is called the nonlinear phenomenon of real contact area.At present,there is no unified conclusion on the explanation of this phenomenon.We set up an experimental apparatus based on the total reflection principle to verify this phenomenon and analyze its mechanism.An image processing method is proposed,which can be used to quantitative analysis micro contact behaviors on macro contact phenomenon.The weighted superposition method is used to identify micro contact spots,to calculate the real contact area,and the color superimposed image is used to identify micro contact behaviors.Based on this method,the spatiotemporal evolution mechanism of real contact area nonlinear phenomena is quantitatively analyzed.Furthermore,the influence of nonlinear phenomenon of real contact area on the whole loading and unloading process is analyzed experimentally.It is found that the effects of fluid between contact interface,normal load amplitude and initial contact state on contact behavior cannot be ignored in large-scale interface contact with small roughness surface. 展开更多
关键词 real contact area total reflection method micro-contact spots interface contact experimental analysis
下载PDF
Ohmic Contact at Al/TiO_2/n-Ge Interface with TiO_2 Deposited at Extremely Low Temperature
9
作者 张译 韩根全 +3 位作者 刘艳 刘欢 张进成 郝跃 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第2期116-119,共4页
TiO2deposited at extremely low temperature of 120°C by atomic layer deposition is inserted between metal and n-Ge to relieve the Fermi level pinning. X-ray photoelectron spectroscopy and cross-sectional transmiss... TiO2deposited at extremely low temperature of 120°C by atomic layer deposition is inserted between metal and n-Ge to relieve the Fermi level pinning. X-ray photoelectron spectroscopy and cross-sectional transmission electron microscopy indicate that the lower deposition temperature tends to effectively eliminate the formation of GeOxto reduce the tunneling resistance. Compared with TiO2deposited at higher temperature of 250°C,there are more oxygen vacancies in lower-temperature-deposited TiO2, which will dope TiO2contributing to the lower tunneling resistance. Al/TiO2/n-Ge metal-insulator-semiconductor diodes with 2 nm 120°C deposited TiO2achieves 2496 times of current density at-0.1 V compared with the device without the TiO2interface layer case, and is 8.85 times larger than that with 250°C deposited TiO2. Thus inserting extremely low temperature deposited TiO2to depin the Fermi level for n-Ge may be a better choice. 展开更多
关键词 TIO Ohmic contact at Al/TiO2/n-Ge Interface with TiO2 Deposited at Extremely Low Temperature Ge Al
下载PDF
Atomically bonding Na anodes with metallized ceramic electrolytes by ultrasound welding for high-energy/power solid-state sodium metal batteries 被引量:1
10
作者 Dongchen Li Xinxin Wang +7 位作者 Qi Guo Xiaole Yu Shangxu Cen Huirong Ma Jingjing Chen Dajian Wang Zhiyong Mao Chenlong Dong 《Carbon Energy》 SCIE CSCD 2023年第2期184-192,共9页
A solid-state sodium metal battery has cut a striking figure in next-generation large-scale energy storage technology on account of high safety,high energy density,and low cost.Nevertheless,the large interfacial resis... A solid-state sodium metal battery has cut a striking figure in next-generation large-scale energy storage technology on account of high safety,high energy density,and low cost.Nevertheless,the large interfacial resistance and sodium dendrite growth originating from the poor interface contact seriously hinder its practical application.Herein,a modified ultrasound welding was proposed to atomically bond Na anodes and Au-metalized Na_(3)Zr_(2)Si_(2)PO_(12) electrolytes associated with the in situ formation of Na–Au alloy interlayers.Thereupon,intimate Na_(3)Zr_(2)Si_(2)PO_(12)-Au/Na interfaces with a low interfacial resistance(~23Ωcm^(2))and a strong dendrite inhibition ability were constructed.The optimized Na symmetric battery can cycle steadily for more than 900 h at 0.3 mA cm^(-2) under a low overpotential(<50 mV)of Na electroplating/stripping and deliver a high critical current density of 0.8 mAcm^(-2) at room temperature.By incorporating the above interface into the solid-state Na metal battery,taking three-dimensional Na_(3)V_(2)(PO_(4))_(3) as the cathode,the full battery offers a high energy density of 291 Wh kg^(-1) at a high power density of 1860Wkg^(-1).A pouch-type solid-state sodium metal full battery based on a ceramic electrolyte was assembled for the first time,and it lit a 3 V LED lamp.Such a strategy of the ultrasound welding metalized solid-state electrolyte/Na interface by engineering the Na-Au interlayer would pave a new pathway to engineer a low-resistance and highly stable interface for high-energy/density solid-state sodium metal batteries. 展开更多
关键词 intimate interface contact metallized ceramics Na-Au interlayer solid-state sodium metal battery ultrasound welding
下载PDF
Control Method for Steel Strip Roughness in Two-stand Temper Mill Rolling 被引量:8
11
作者 LI Rui ZHANG Qingdong +2 位作者 ZHANG Xiaofeng YU Meng WANG Bo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第3期573-579,共7页
How to control surface roughness of steel strip in a narrow range for a long time has become an important question because surface roughness would significantly influence the appearance of the products. However, there... How to control surface roughness of steel strip in a narrow range for a long time has become an important question because surface roughness would significantly influence the appearance of the products. However, there are few effective solutions to solve the problem currently. In this paper, considering both asperities of work roll pressing in and squeezing the steel strip, two asperity contact models including squeezing model and pressing in model in a two-stand temper mill rolling are established by using finite element method(FEM). The simulation investigates the influences of multiple process parameters, such as work roll surface roughness, roll radius and roll force on the surface roughness of steel strip. The simulation results indicate that work rolls surface roughness and roll force play important roles in the products; furthermore, the effect of roll force in the first stand is opposite to the second. According to the analysis, a control method for steel strip surface roughness in a narrow range for a long time is proposed, which applies higher work roll roughness in the first stand and lower roll roughness in the second to make the steel strip roughness in a required narrow range. In the later stage of the production, decreasing the roll force in the first stand and increasing the roll force in the second stand guarantee the steel strip roughness relatively stable in a long time. The following experimental measurements on the surface topography and roughness of the steel strips during the whole process are also conducted. The results validate the simulation conclusions and prove the effect of the control method. The application of the proposed method in the steel strip production shows excellent performance including long service life of work roll and high finished product rate. 展开更多
关键词 temper mill rolling surface roughness interface contact
下载PDF
Metal-seed assistant photodeposition of platinum over Ta_(3)N_(5) photocatalyst for promoted solar hydrogen production under visible light 被引量:2
12
作者 Juhong Lian Deng Li +6 位作者 Yu Qi Nengcong Yang Rui Zhang Tengfeng Xie Naijia Guan Landong Li Fuxiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期444-448,共5页
Cocatalysts play a vital role in accelerating the reaction kinetics and improving the charge separation of photocatalysts for solar hydrogen production.The promotion of the photocatalytic activity largely relies on th... Cocatalysts play a vital role in accelerating the reaction kinetics and improving the charge separation of photocatalysts for solar hydrogen production.The promotion of the photocatalytic activity largely relies on the loading approach of the cocatalysts.Herein,we introduce a metal-seed assistant photodeposition approach to load the hydrogen evolution cocatalyst of platinum onto the surface of Ta_(3)N_(5) photocatalyst,which exhibits about 3.6 times of higher photocatalytic proton reduction activity with respect to the corresponding impregnation or photodeposition loading.Based on our characterizations,the increscent contact area of the cocatalyst/semiconductor interface with metal-seed assistant photodeposition method is proposed to be responsible for the promoted charge separation as well as enhanced photocatalytic H2 evolution activity.It is interesting to note that this innovative deposition strategy can be easily extended to loading of platinum cocatalyst with other noble or non-noble metal seeds for promoted activities,demonstrating its good generality.Our work may provide an alternative way of depositing cocatalyst for better photocatalytic performances. 展开更多
关键词 Tantalum nitride COCATALYST Charge separation contact interface Metal-seed assistant photodeposition Solar hydrogen production
下载PDF
Pancake-Like MOF Solid-State Electrolytes with Fast Ion Migration for High-Performance Sodium Battery 被引量:2
13
作者 Gang Zhang Jun Shu +5 位作者 Lin Xu Xinyin Cai Wenyuan Zou Lulu Du Song Hu Liqiang Mai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第7期74-85,共12页
Solid-state electrolyte(SSE)of the sodium-ion battery have attracted tremendous attention in the next generation energy storage materials on account of their wide electrochemical window and thermal stability.However,t... Solid-state electrolyte(SSE)of the sodium-ion battery have attracted tremendous attention in the next generation energy storage materials on account of their wide electrochemical window and thermal stability.However,the high interfacial impedance,low ion transference number and complex preparation process restrict the application of SSE.Herein,inspired by the excellent sieving function and high specific surface area of red blood cells,we obtained a solid-like electrolyte(SLE)based on the combination of the pancake-like metal-organic framework(MOF)with liquid electrolyte,possessing a high ionic conductivity of 6.60×10^(-4) S cm^(−1),and excellent sodium metal compatibility.In addition,we investigated the ion restriction effect of MOF’s apertures size and special functional groups,and the ion transference number increased from 0.16 to 0.33.Finally,the assembled Na_(0.44)MnO_(2)//SLE//Na full batteries showed no obvious capacity decrease after 160 cycles.This material design of SLE in our work is an important key to obtain fast ion migration SLE for high-performance sodium-ion batteries. 展开更多
关键词 Metal-organic Frameworks Sodium-ion Battery Solid-like Electrolyte Interface contact
下载PDF
Numerical Analysis of Asphalt Pavements under Moving Wheel Loads 被引量:2
14
作者 罗辉 朱宏平 郝行舟 《Journal of China University of Geosciences》 SCIE CSCD 2006年第4期349-354,共6页
The responses of the pavement in service are the basis for the design of the semi-rigid base course asphalt pavement. Due to the dynamic characteristics of wheel loacis and the temperature loads, the dynamic response ... The responses of the pavement in service are the basis for the design of the semi-rigid base course asphalt pavement. Due to the dynamic characteristics of wheel loacis and the temperature loads, the dynamic response analysis is very significant. In this article, the dynamic analysis of asphalt pavement under moving wheel loads is carried out using finite dement method canpled with non-reflective boundary method. The influences of the base modulus, thickness, the vehicle velocity, the tire pressure, and the contact condition at the interface are studied using parametric analysis. The results of numerical analysis show that it is not appropriate to simply increase the base modulus or thickness in the design. It would be beneficial if the base design is optimized synthetically. The increase of damping is also beneficial to the pavements because of the surface deflection and the stresses declination. Furthermore, the good contact condition at the interface results in good performance because it combines every layer of the pavement to work together. As overload aggravates the working condition of the pavement, it is not allowed. 展开更多
关键词 dynamic analysis non-reflective boundary VISCOELASTICITY the interface contacting condition.
下载PDF
Over 12%efficient kesterite solar cell via back interface engineering 被引量:2
15
作者 Yunhai Zhao Zixuan Yu +8 位作者 Juguang Hu Zhuanghao Zheng Hongli Ma Kaiwen Sun Xiaojing Hao Guangxing Liang Ping Fan Xianghua Zhang Zhenghua Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期321-329,I0008,共10页
Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)has attracted considerable attention as a non-toxic and earthabundant solar cell material.During selenization of CZTSSe film at high temperature,the reaction between CZTSSe and Mo... Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)has attracted considerable attention as a non-toxic and earthabundant solar cell material.During selenization of CZTSSe film at high temperature,the reaction between CZTSSe and Mo is one of the main reasons that result in unfavorable absorber and interface quality,which leads to large open circuit voltage deficit(VOC-def)and low fill factor(FF).Herein,a WO_(3)intermediate layer introduced at the back interface can effectually inhibit the unfavorable interface reaction between absorber and back electrode in the preliminary selenization progress;thus high-quality crystals are obtained.Through this back interface engineering,the traditional problems of phase segregation,voids in the absorber and over thick Mo(S,Se)_(2)at the back interface can be well solved,which greatly lessens the recombination in the bulk and at the interface.The increased minority carrier diffusion length,decreased barrier height at back interface contact and reduced deep acceptor defects give rise to systematic improvement in VOCand FF,finally a 12.66%conversion efficiency for CZTSSe solar cell has been achieved.This work provides a simple way to fabricate highly efficient solar cells and promotes a deeper understanding of the function of intermediate layer at back interface in kesterite-based solar cells. 展开更多
关键词 Cu_(2)ZnSn(S Se)_(4) WO_(3)intermediate layer Crystal growth Minority carrier diffusion length Interface contact quality
下载PDF
Formulations of a hydromechanical interface element 被引量:3
16
作者 Zhong-Zhi Fu Si-Hong Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第5期697-705,共9页
A hydromechanical interface element is proposed for the consideration of the hydraulic-mechanical coupling effect along the interface.The fully coupled governing equations and the relevant finite element formulations ... A hydromechanical interface element is proposed for the consideration of the hydraulic-mechanical coupling effect along the interface.The fully coupled governing equations and the relevant finite element formulations are derived in detail for the interface element.All the involved matrices are of the same form as those of a solid element,which makes the incorporation of the model into a finite element program straightforward.Three examples are then numerically simulated using the interface element.Reasonable results confirm the correctness of the proposed model and motivate its application in hydromechanical contact problems in the future. 展开更多
关键词 Hydromechanical interface element · Coupling effect · Finite element · contact problem
下载PDF
An in-situ polymerized interphase engineering for high-voltage allsolid- state lithium-metal batteries
17
作者 Lu Nie Shaojie Chen +5 位作者 Mengtian Zhang Tianyi Gao Yuyao Zhang Ran Wei Yining Zhang Wei Liu 《Nano Research》 SCIE EI CSCD 2024年第4期2687-2692,共6页
All-solid-state lithium batteries(ASSLBs)have attracted great interest due to their promising energy density and strong safety.However,the interface issues,including large interfacial resistance between electrode and ... All-solid-state lithium batteries(ASSLBs)have attracted great interest due to their promising energy density and strong safety.However,the interface issues,including large interfacial resistance between electrode and electrolyte and low electrochemical stability of solid-state electrolytes against high-voltage cathodes,have restricted the development of high-voltage ASSLBs.Herein,we report an ASSLB with stable cycling by adopting a conformal polymer interlayer in-situ formed at the Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)–cathode interfaces.The polymer can perfectlyfill the voids and create a stable interface contact between LLZTO and cathodes.In addition,the electric field across the polymer interlayer is reduced compared with pure solid polymer electrolyte(SPE),which facilitates the electrochemical stability with high-voltage cathode.The all-solid-state Li|LLZTO-SPE|LiFe_(0.4)Mn_(0.6)PO_(4)(LMFP)cells achieve a low interface impedance,high specific capacity,and excellent cycling performance.This work presents an effective and practical strategy to rationally design the electrode–electrolyte interface for the application of high-voltage ASSLBs. 展开更多
关键词 all-solid-state lithium batteries interface contact electric field electrochemical stability
原文传递
High performance inkjet-printed QLEDs with 18.3% EQE: improving interfacial contact by novel halogen-free binary solvent system 被引量:5
18
作者 Ming Chen Liming Xie +7 位作者 Changting Wei Yuan-Qiu-Qiang Yi Xiaolian Chen Jian Yang Jinyong Zhuang Fushan Li Wenming Su Zheng Cui 《Nano Research》 SCIE EI CSCD 2021年第11期4125-4131,共7页
Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt(4,4′-(N-(4-butylphenyl))](TFB),one of the most popular and widely used hole-transport layer(HTL)materials,has been successfully applied in high performance spin-coated quantum... Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt(4,4′-(N-(4-butylphenyl))](TFB),one of the most popular and widely used hole-transport layer(HTL)materials,has been successfully applied in high performance spin-coated quantum dots-based light-emitting diodes(QLEDs)due to its suitable energy level and high mobility.However,there are still many challenging issues in inkjet-printed QLED devices when using TFB as HTL.TFB normally suffers from the interlayer mixing and erosion,and low surface energy against the good film formation.Here,a novel environment-friendly binary solvent system was established for formulating quantum dot(QD)inks,which is based on mixing halogen-free alkane solvents of decalin and n-tridecane.The optimum volume ratio for the mixture of decalin and n-tridecane was found to be 7:3,at which a stable ink jetting flow and coffee-ring free QD films could be formed.To research the influence of substrate surface on the formation of inkjet-printed QD films,TFB was annealed at different temperatures,and the optimum annealing temperature was found to enable high quality inkjet-printed QD film.Inkjet-printed red QLED was ultimately manufactured.A maximum 18.3%of external quantum efficiency(EQE)was achieved,reaching 93%of the spin-coated QLED,which is the best reported high efficiency inkjet-printed red QLEDs to date.In addition,the inkjet-printed QLED achieved similar T75 operational lifetime(27 h)as compared to the spin-coated reference QLED(28 h)at 2,000 cd·m−2.This work demonstrated that the novel orthogonal halogen-free alkane co-solvents can improve the interfacial contact and facilitate high-performance inkjet printing QLEDs with high EQE and stability. 展开更多
关键词 quantum dots quantum dots light-emitting diodes(QLEDs) inkjet printing halogen-free inks contact interface
原文传递
Simulation of flows with moving contact lines on a dual-resolution Cartesian grid using a diffuse-interface immersed-boundary method 被引量:1
19
作者 刘浩然 李晗 丁航 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第5期774-781,共8页
In this paper, we investigate flows with moving contact lines on curved solid walls on a dual-resolution grid using a diffuse-interface immersed-boundary(DIIB) method. The dual-resolution grid, on which the flows ar... In this paper, we investigate flows with moving contact lines on curved solid walls on a dual-resolution grid using a diffuse-interface immersed-boundary(DIIB) method. The dual-resolution grid, on which the flows are solved on a coarse mesh while the interface is resolved on a fine mesh, was shown to significantly improve the computational efficiency when simulating multiphase flows. On the other hand, the DIIB method is able to resolve dynamic wetting on curved substrates on a Cartesian grid, but it usually requires a mesh of high resolution in the vicinity of a moving contact line to resolve the local flow. In the present study, we couple the DIIB method with the dual-resolution grid, to improve the interface resolution for flows with moving contact lines on curved solid walls at an affordable cost. The dynamic behavior of moving contact lines is validated by studying drop spreading, and the numerical results suggest that the effective slip length λ_n can be approximated by 1.9Cn, where Cn is a dimensionless measure of the thickness of the diffuse interface. We also apply the method to drop impact onto a convex substrate, and the results on the dual-resolution grid are in good agreement with those on a single-resolution grid. It shows that the axisymmetric simulations using the DIIB method on the dual-resolution grid saves nearly 60% of the computational time compared with that on a single-resolution grid. 展开更多
关键词 Dual-resolution grid moving contact lines diffuse interface model multiphase flows
原文传递
Phase orientation improved the corrosion resistance and conductivity of Cr_(2)AlC coatings for metal bipolar plates 被引量:3
20
作者 Guanshui Ma Dong Zhang +4 位作者 Peng Guo Hao Li Yang Xin Zhenyu Wang Aiying Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第10期36-44,共9页
In view of the M_(n+1)AX_(n)(MAX)phase coatings benefting the adaptive passivation flm for good corrosion resistance and high electronic density of states for excellent electrical conductivity,here,we reported the Cr_... In view of the M_(n+1)AX_(n)(MAX)phase coatings benefting the adaptive passivation flm for good corrosion resistance and high electronic density of states for excellent electrical conductivity,here,we reported the Cr_(2)Al C MAX phase coatings with different preferred orientations by a homemade technique consisting of vacuum arc and magnetron sputtering.The dependence of surface and interface microstructural evolution upon the corrosion and electrochemical properties of deposited coating was focused.Results showed that all the Cr_(2)Al C coatings with different phase orientations greatly improved the performance of stainless steel(SS)316 L substrate.Specifcally,the lowest value of interface contact resistance(ICR)reached to 3.16 mΩcm^(2)and the lowest corrosion current density was 2×10^(-2)μA cm^(-2),which were much better than those of bare SS316L.The combined studies of electrochemical properties and theoretical calculations demonstrated that the Cr_(2)Al C coatings with preferred(103)orientation were easier to form oxide passivation flm on their surface to increase the corrosion resistance. 展开更多
关键词 M_(n+1)AX_(n)phase coating Metal bipolar plate Interface contact resistance Corrosion resistance
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部