In order to understand the occurrence and the developmental regularity of seabuckthorn carpenterworm (Holcocerus hippophaecolus) and predict its population density, the developmental threshold temperature (C) and effe...In order to understand the occurrence and the developmental regularity of seabuckthorn carpenterworm (Holcocerus hippophaecolus) and predict its population density, the developmental threshold temperature (C) and effective accumulative tem- perature (K) of the carpenterworm pupae and eggs were analyzed under the conditions of constant and variable temperatures. The results show that the values of C and K of the carpenterworm pupae are (12.1 ± 0.2) °C and (295.2 ± 4.1) day-degrees at constant temperatures, and (15.5 ± 0.4) °C and (202.4 ± 13.1) day-degrees at variable temperatures. However, the values of C and K of the eggs at variable temperatures are (16.7 ± 0.8) °C and (101.5 ± 12.6) day-degrees. The differences of developmental threshold and effective accumulative temperature under the conditions of constant and variable temperatures of the carpenterworm pupae accord with the developmental regularity of most insects in nature. By comparing five different constant temperatures, the conclusion is that the optimum developmental temperature of the pupae is 21 °C when both the pupation of the mature larvae and the eclosion of the pupae are very accordant. Moreover, the percentage of eclosion is over 90%. The average developmental durations of the carpenter- worm pupae and eggs are 31 and 16 d at variable temperatures.展开更多
The temperature and magnetic moment depend-ence for assessing localized heating utilizing a new class of Manganese-Zinc-Gadolinium mag-netic nanoparticles was studied. These particles showed heating effect when subjec...The temperature and magnetic moment depend-ence for assessing localized heating utilizing a new class of Manganese-Zinc-Gadolinium mag-netic nanoparticles was studied. These particles showed heating effect when subjected to alter-nating filed. Alternatively, a new approach was used to get disperse heating without spot heating by using the synthesis of particles at controlled Curie temperature of less than 44oC. The study reports a simple synthesis of Mn0.5Zn0.5GdxFe(2-x)O4 nanoparticles using chemical co- precipita-tion technique. The particles exhibited Curie temperature of 42篊 and high magnitude of mag-netic moments. The particles showed sigmoid behavior of dependence between temperature and magnetic moments. The Nuclear Magnetic Resonance spectroscopy showed T1 depend-ence on temperature in the range of 10-45篊. The particles may have high promise for self con-trolled magnetic hyperthermia application and its monitoring.展开更多
文摘In order to understand the occurrence and the developmental regularity of seabuckthorn carpenterworm (Holcocerus hippophaecolus) and predict its population density, the developmental threshold temperature (C) and effective accumulative tem- perature (K) of the carpenterworm pupae and eggs were analyzed under the conditions of constant and variable temperatures. The results show that the values of C and K of the carpenterworm pupae are (12.1 ± 0.2) °C and (295.2 ± 4.1) day-degrees at constant temperatures, and (15.5 ± 0.4) °C and (202.4 ± 13.1) day-degrees at variable temperatures. However, the values of C and K of the eggs at variable temperatures are (16.7 ± 0.8) °C and (101.5 ± 12.6) day-degrees. The differences of developmental threshold and effective accumulative temperature under the conditions of constant and variable temperatures of the carpenterworm pupae accord with the developmental regularity of most insects in nature. By comparing five different constant temperatures, the conclusion is that the optimum developmental temperature of the pupae is 21 °C when both the pupation of the mature larvae and the eclosion of the pupae are very accordant. Moreover, the percentage of eclosion is over 90%. The average developmental durations of the carpenter- worm pupae and eggs are 31 and 16 d at variable temperatures.
文摘The temperature and magnetic moment depend-ence for assessing localized heating utilizing a new class of Manganese-Zinc-Gadolinium mag-netic nanoparticles was studied. These particles showed heating effect when subjected to alter-nating filed. Alternatively, a new approach was used to get disperse heating without spot heating by using the synthesis of particles at controlled Curie temperature of less than 44oC. The study reports a simple synthesis of Mn0.5Zn0.5GdxFe(2-x)O4 nanoparticles using chemical co- precipita-tion technique. The particles exhibited Curie temperature of 42篊 and high magnitude of mag-netic moments. The particles showed sigmoid behavior of dependence between temperature and magnetic moments. The Nuclear Magnetic Resonance spectroscopy showed T1 depend-ence on temperature in the range of 10-45篊. The particles may have high promise for self con-trolled magnetic hyperthermia application and its monitoring.