In this paper, we tried to present a qualitative correlation, based on extensive experimental trials between the value and the evolution of the friction coefficient, wear and contact temperature in the case of linear ...In this paper, we tried to present a qualitative correlation, based on extensive experimental trials between the value and the evolution of the friction coefficient, wear and contact temperature in the case of linear dry contact, thermoplastic material reinforced with SGF (short glass fibres) and various steel surfaces. We tried, believing successfully, the graphic illustration of the evolution of the steel surface wear and of the contact temperature, depending on the friction coefficient. It was analyzed in detail the influence of the normal load and sliding speed, but also of the metallic surface roughness on the friction coefficient.展开更多
The direct blending of polyether ether ketone(PEEK)with a solid lubricant such as polytetrafluoroethylene(PTFE)improves its tribological performance,but compromises its outstanding mechanical properties and processabi...The direct blending of polyether ether ketone(PEEK)with a solid lubricant such as polytetrafluoroethylene(PTFE)improves its tribological performance,but compromises its outstanding mechanical properties and processability.While these negative effects might be circumvented via the hybrid wear method,the influence of the contact temperature between multiple sliding components acting together is not fully understood.Herein,an analytical temperature model considering the influence of both micro-and macro-thermal behavior is extended to predict the contact temperature of a dual-pin-on-disk hybrid wear system.The interactions between several heat sources are investigated and experimentally verified.The analytical results show that the nominal temperature rise of the shared wear track is determined by the combined effect of the heat generated by both pin components,while the rise in flash temperature at the region in contact with each pin component is dependent upon its individual characteristics and working conditions.Hence,while different temperature peaks can coexist in the shared wear track,the maximum value dominates the performance of the system.For the experimentally investigated PEEK–PTFE–steel hybrid wear system,the formation of tribofilms is blocked,and the hybrid wear system fails,when the peak temperature exceeds the glass transition temperature of both pins due to an increase in applied load.展开更多
This experiment is to study the special resistant induced by the high-speed evaporation surrounding themoving high-temperature particles. An observable equipment was designed, in which the first 11 experiments wereper...This experiment is to study the special resistant induced by the high-speed evaporation surrounding themoving high-temperature particles. An observable equipment was designed, in which the first 11 experiments wereperformed by pouring one or several Zirconia spheres with various high-temperature and a diameter of 3~ 10 mminto a water pool. The particles falling-down speeds were recorded by high-speed photographic instrumentation,and pressures and water temperatures were measured. A comparison between the experiments with cold and hotspheres respectively, employing three different sphere types each, was presented. The experimental data, com-pared with the theory of the evaporation drag model, are nearly identical.展开更多
The tribological behavior depends significantly on friction heat under high sliding velocity. Many factors influence the conduction rate of friction heat, such as thermophysical properties of the pairs, the formation ...The tribological behavior depends significantly on friction heat under high sliding velocity. Many factors influence the conduction rate of friction heat, such as thermophysical properties of the pairs, the formation components of interface-film, environment mediums, etc. Through theoretical and experimental studies on surface temperature, the heat partition approaches have been applied to the pairs of M2 steel against GCr 15 steel to compare and discuss their tribological behavior in dry sliding contact. The results indicate that the values of the contact pressure have little effect on the heat partition at a high sliding velocity of 40 m/s. Furthermore, the degree of correlation between the dynamic temperature and friction coefficient is obvious, and the correlation degree of parameters increases as the pressure grows. A close correlation exists among the temperatures measured from different points of the pin specimen. At last, X-ray diffraction analysis denotes that the carbides of secondary M6C are separated out during the process of friction.展开更多
Tribological behaviours of Ti-6Al-4V alloy pins sliding against GCr15 steel discs over a range of contact pressures (0.33-1.33 MPa) and sliding velocities (30-70 m/s) were investigated using a pin-on-disc tribomet...Tribological behaviours of Ti-6Al-4V alloy pins sliding against GCr15 steel discs over a range of contact pressures (0.33-1.33 MPa) and sliding velocities (30-70 m/s) were investigated using a pin-on-disc tribometer under unlubricated conditions. The wear mechanisms and the wear transition were analyzed based on examinations of worn surfaces using SEM, EDS and XRD. When the velocity increases, the friction coefficient and the wear rate of the Ti-6Al-4V alloy show typical transition features, namely, the critical values of sliding velocities for 0.33 and 0.67 MPa are 60 and 40 m/s, respectively. The experimental results reveal that the tribological behaviours of Ti-6Al-4V alloys are controlled by the thermal-mechanical effects, which connects with the friction heat and hard particles of the pairs. A tribolayer containing mainly Ti oxides and V oxides is formed on the worn surface of Ti-6Al-4V alloy.展开更多
An atmospheric pressure plasma jet generated in Ar and O2/Ar mixtures has been investigated by specially designed equipment with double power electrodes at 20~32 kHz, and their effects on the cleaning of surfaces have...An atmospheric pressure plasma jet generated in Ar and O2/Ar mixtures has been investigated by specially designed equipment with double power electrodes at 20~32 kHz, and their effects on the cleaning of surfaces have been studied. Properties of the jet discharge are studied by electrical diagnostics, including the waveform of discharge voltage, discharge current and the Q-V Lissajous figures. The optical emission spectroscopy is used to measure the plasma parameters, such as the excitation temperature and the gas temperature. It is found that the consumed power and the excitation temperature increase with increase of the discharge frequency. On the other hand, at the same discharge frequency, these parameters in O2/Ar mixture plasma are found to be much larger. The effect on surface cleaning is studied from the changes in the contact angle. For Ar plasma jet, the contact angle decreases with increase of the discharge frequency. For O2/Ar mixture plasma jet, the contact angle decreases with increase of discharge frequency up to 26 kHz, however, further increase of discharge frequency does not show further decrease in the contact angle. At the same discharge frequency, the contact angle after O2/Ar mixture plasma cleaning is found to be much lower compared to the case of pure Ar. From the results of quadrupole mass-spectrum analysis, we can identify more fragment molecules of CO and H2O in the emitted gases after O2/Ar plasma jet treatment compared with Ar plasma jet treatment, which are produced by the decomposition of surface organic contaminants during the cleaning process.展开更多
The Ti/Al/Ni/Au metals were deposited on undoped AlN films by electron beam evaporation. The influence of annealing temperature on the properties of contacts was investigated. When the annealing temperatures were betw...The Ti/Al/Ni/Au metals were deposited on undoped AlN films by electron beam evaporation. The influence of annealing temperature on the properties of contacts was investigated. When the annealing temperatures were between 800 and 950 ℃, the AlN-Ti/Al/Ni/Au contacts became ohmic contacts and the resistance decreased with the increase of annealing temperature. A lowest specific contacts resistance of 0.379 Ω·cm^2 was obtained for the sample annealed at 950 ℃. In this work, we confirmed that the formation mechanism of ohmic contacts on Al N was due to the formation of Al-Au, Au-Ti and Al-Ni alloys, and reduction of the specific contacts resistance could originate from the formation of Au2Ti and AlAu2 alloys. This result provided a possibility for the preparation of Al N-based high-frequency, high-power devices and deep ultraviolet devices.展开更多
In this paper we tried to present a qualitative correlation,based on extensive experimental determinations between the value and the evolution of the friction coefficient,wear,and contact temperature,in the case of li...In this paper we tried to present a qualitative correlation,based on extensive experimental determinations between the value and the evolution of the friction coefficient,wear,and contact temperature,in the case of linear dry contact,for thermoplastic material reinforced with short glass fibers(SGF)and various steel surfaces.The aim was to highlight the evolution of the wear process depending on the evolution of the friction coefficient.As a result,it was possible to graphically illustrate the evolution of the friction coefficient and the change of the wear process,emphasizing the abrasive,adhesive and corrosive wear.The evolution of the plastic material transfer function of the contact temperature,namely of the power lost by friction(product between the contact pressure and sliding speed,p and v)was aimed and it was highlighted.It has been demonstrated that in the case of a 30%SGF content it can reach and even exceed contact temperatures very close to the flow limit of the plastic material.We tried,believing successfully,the graphic illustration of the evolution of the steel surface wear and of the contact temperature,depending on the friction coefficient.The influence of the normal load and sliding speed was evaluated in detail,but also the influence of the metallic surface roughness on the friction coefficient was discussed.展开更多
Schottky diodes with an Ag/n-Si/W/Cu structure and 100μm in diameter were studied.Analyzing the silver metal surface coating on the n-Si substrate using a scanning probe microscopy(SPM) device showed a large number...Schottky diodes with an Ag/n-Si/W/Cu structure and 100μm in diameter were studied.Analyzing the silver metal surface coating on the n-Si substrate using a scanning probe microscopy(SPM) device showed a large number of nano patches in the surface with dimensions of 0 to 100 nm.The potential distribution of the patches revealed that the potential of each patch with the neighboring patches was different.The electrical characteristics of the devices were studied between temperature ranges of 300 and 380 K.When the temperature ideality factor approximately increases,the potential barrier height decreases.The potential barrier height was calculated separately from theⅠ-Ⅴand C-V characteristics.The main reasons for the significant difference between room temperature and higher temperatures were the differences in patch distribution,the different potentials of each patch,and the interactions between them.The effective potential barrier height depended on the degree of inhomogeneity,and thus the operating potential barrier height in the contact surface was smaller than the average value,and the ideality factor was more than unitary.With the increase in the potential value,the ideality factor becomes close to unitary, and with increasing temperatures,the ideality factor is increased.In this case,the maximum potential barrier height accrues at a greater distance from the metal contact.For this reason,at high temperatures the average value of the potential barrier height is smaller.Moreover,with increasing temperature,the ideality factor is increased.展开更多
The melting characteristics and wettability of the binding phase in high basicity sinter were studied. By changing nCaO∶nFe2O3 (molar ratio of CaO to Fe2O3) as well as the percentage of MgO,SiO2,and Al2O3,the melti...The melting characteristics and wettability of the binding phase in high basicity sinter were studied. By changing nCaO∶nFe2O3 (molar ratio of CaO to Fe2O3) as well as the percentage of MgO,SiO2,and Al2O3,the melting characteristics and wettability of the binding phase were discussed. The results indicated that the characteristic melting temperature was the lowest and wettability was the best at nCaO∶nFe2O3=1∶1 (without addition); the addition of MgO increased the characteristic melting temperature and contact angles; when the percentage of SiO2 or Al2O3 was 3%,the characteristic melting temperature was the lowest,whereas the contact angles increased with an increase in SiO2 and Al2O3 contents.展开更多
文摘In this paper, we tried to present a qualitative correlation, based on extensive experimental trials between the value and the evolution of the friction coefficient, wear and contact temperature in the case of linear dry contact, thermoplastic material reinforced with SGF (short glass fibres) and various steel surfaces. We tried, believing successfully, the graphic illustration of the evolution of the steel surface wear and of the contact temperature, depending on the friction coefficient. It was analyzed in detail the influence of the normal load and sliding speed, but also of the metallic surface roughness on the friction coefficient.
基金supported by the National Natural Science Foundation of China(No.62073151)the Jilin Provincial Science&Technology Department(Nos.20200301011RQ and 20210101177JC)the Fundamental Research Funds for the Central Universities(No.22120210160).
文摘The direct blending of polyether ether ketone(PEEK)with a solid lubricant such as polytetrafluoroethylene(PTFE)improves its tribological performance,but compromises its outstanding mechanical properties and processability.While these negative effects might be circumvented via the hybrid wear method,the influence of the contact temperature between multiple sliding components acting together is not fully understood.Herein,an analytical temperature model considering the influence of both micro-and macro-thermal behavior is extended to predict the contact temperature of a dual-pin-on-disk hybrid wear system.The interactions between several heat sources are investigated and experimentally verified.The analytical results show that the nominal temperature rise of the shared wear track is determined by the combined effect of the heat generated by both pin components,while the rise in flash temperature at the region in contact with each pin component is dependent upon its individual characteristics and working conditions.Hence,while different temperature peaks can coexist in the shared wear track,the maximum value dominates the performance of the system.For the experimentally investigated PEEK–PTFE–steel hybrid wear system,the formation of tribofilms is blocked,and the hybrid wear system fails,when the peak temperature exceeds the glass transition temperature of both pins due to an increase in applied load.
文摘This experiment is to study the special resistant induced by the high-speed evaporation surrounding themoving high-temperature particles. An observable equipment was designed, in which the first 11 experiments wereperformed by pouring one or several Zirconia spheres with various high-temperature and a diameter of 3~ 10 mminto a water pool. The particles falling-down speeds were recorded by high-speed photographic instrumentation,and pressures and water temperatures were measured. A comparison between the experiments with cold and hotspheres respectively, employing three different sphere types each, was presented. The experimental data, com-pared with the theory of the evaporation drag model, are nearly identical.
基金This research was financially supported by the National Natural Science Foundation of China (No.50375046 and No.50432020)
文摘The tribological behavior depends significantly on friction heat under high sliding velocity. Many factors influence the conduction rate of friction heat, such as thermophysical properties of the pairs, the formation components of interface-film, environment mediums, etc. Through theoretical and experimental studies on surface temperature, the heat partition approaches have been applied to the pairs of M2 steel against GCr 15 steel to compare and discuss their tribological behavior in dry sliding contact. The results indicate that the values of the contact pressure have little effect on the heat partition at a high sliding velocity of 40 m/s. Furthermore, the degree of correlation between the dynamic temperature and friction coefficient is obvious, and the correlation degree of parameters increases as the pressure grows. A close correlation exists among the temperatures measured from different points of the pin specimen. At last, X-ray diffraction analysis denotes that the carbides of secondary M6C are separated out during the process of friction.
基金the National Natural Science Foundation of China(No.50375046 and No.50432020)
文摘Tribological behaviours of Ti-6Al-4V alloy pins sliding against GCr15 steel discs over a range of contact pressures (0.33-1.33 MPa) and sliding velocities (30-70 m/s) were investigated using a pin-on-disc tribometer under unlubricated conditions. The wear mechanisms and the wear transition were analyzed based on examinations of worn surfaces using SEM, EDS and XRD. When the velocity increases, the friction coefficient and the wear rate of the Ti-6Al-4V alloy show typical transition features, namely, the critical values of sliding velocities for 0.33 and 0.67 MPa are 60 and 40 m/s, respectively. The experimental results reveal that the tribological behaviours of Ti-6Al-4V alloys are controlled by the thermal-mechanical effects, which connects with the friction heat and hard particles of the pairs. A tribolayer containing mainly Ti oxides and V oxides is formed on the worn surface of Ti-6Al-4V alloy.
基金supported by National Natural Science Foundation of China(Nos.51077008 and 11247239)
文摘An atmospheric pressure plasma jet generated in Ar and O2/Ar mixtures has been investigated by specially designed equipment with double power electrodes at 20~32 kHz, and their effects on the cleaning of surfaces have been studied. Properties of the jet discharge are studied by electrical diagnostics, including the waveform of discharge voltage, discharge current and the Q-V Lissajous figures. The optical emission spectroscopy is used to measure the plasma parameters, such as the excitation temperature and the gas temperature. It is found that the consumed power and the excitation temperature increase with increase of the discharge frequency. On the other hand, at the same discharge frequency, these parameters in O2/Ar mixture plasma are found to be much larger. The effect on surface cleaning is studied from the changes in the contact angle. For Ar plasma jet, the contact angle decreases with increase of the discharge frequency. For O2/Ar mixture plasma jet, the contact angle decreases with increase of discharge frequency up to 26 kHz, however, further increase of discharge frequency does not show further decrease in the contact angle. At the same discharge frequency, the contact angle after O2/Ar mixture plasma cleaning is found to be much lower compared to the case of pure Ar. From the results of quadrupole mass-spectrum analysis, we can identify more fragment molecules of CO and H2O in the emitted gases after O2/Ar plasma jet treatment compared with Ar plasma jet treatment, which are produced by the decomposition of surface organic contaminants during the cleaning process.
文摘The Ti/Al/Ni/Au metals were deposited on undoped AlN films by electron beam evaporation. The influence of annealing temperature on the properties of contacts was investigated. When the annealing temperatures were between 800 and 950 ℃, the AlN-Ti/Al/Ni/Au contacts became ohmic contacts and the resistance decreased with the increase of annealing temperature. A lowest specific contacts resistance of 0.379 Ω·cm^2 was obtained for the sample annealed at 950 ℃. In this work, we confirmed that the formation mechanism of ohmic contacts on Al N was due to the formation of Al-Au, Au-Ti and Al-Ni alloys, and reduction of the specific contacts resistance could originate from the formation of Au2Ti and AlAu2 alloys. This result provided a possibility for the preparation of Al N-based high-frequency, high-power devices and deep ultraviolet devices.
基金the Romanian Acad-emy and University of Civil Engineering Bucharest,for its material and technical support offered in order to achieve these researches.
文摘In this paper we tried to present a qualitative correlation,based on extensive experimental determinations between the value and the evolution of the friction coefficient,wear,and contact temperature,in the case of linear dry contact,for thermoplastic material reinforced with short glass fibers(SGF)and various steel surfaces.The aim was to highlight the evolution of the wear process depending on the evolution of the friction coefficient.As a result,it was possible to graphically illustrate the evolution of the friction coefficient and the change of the wear process,emphasizing the abrasive,adhesive and corrosive wear.The evolution of the plastic material transfer function of the contact temperature,namely of the power lost by friction(product between the contact pressure and sliding speed,p and v)was aimed and it was highlighted.It has been demonstrated that in the case of a 30%SGF content it can reach and even exceed contact temperatures very close to the flow limit of the plastic material.We tried,believing successfully,the graphic illustration of the evolution of the steel surface wear and of the contact temperature,depending on the friction coefficient.The influence of the normal load and sliding speed was evaluated in detail,but also the influence of the metallic surface roughness on the friction coefficient was discussed.
文摘Schottky diodes with an Ag/n-Si/W/Cu structure and 100μm in diameter were studied.Analyzing the silver metal surface coating on the n-Si substrate using a scanning probe microscopy(SPM) device showed a large number of nano patches in the surface with dimensions of 0 to 100 nm.The potential distribution of the patches revealed that the potential of each patch with the neighboring patches was different.The electrical characteristics of the devices were studied between temperature ranges of 300 and 380 K.When the temperature ideality factor approximately increases,the potential barrier height decreases.The potential barrier height was calculated separately from theⅠ-Ⅴand C-V characteristics.The main reasons for the significant difference between room temperature and higher temperatures were the differences in patch distribution,the different potentials of each patch,and the interactions between them.The effective potential barrier height depended on the degree of inhomogeneity,and thus the operating potential barrier height in the contact surface was smaller than the average value,and the ideality factor was more than unitary.With the increase in the potential value,the ideality factor becomes close to unitary, and with increasing temperatures,the ideality factor is increased.In this case,the maximum potential barrier height accrues at a greater distance from the metal contact.For this reason,at high temperatures the average value of the potential barrier height is smaller.Moreover,with increasing temperature,the ideality factor is increased.
基金Sponsored by National Natural Science Foundation of China (50474014)
文摘The melting characteristics and wettability of the binding phase in high basicity sinter were studied. By changing nCaO∶nFe2O3 (molar ratio of CaO to Fe2O3) as well as the percentage of MgO,SiO2,and Al2O3,the melting characteristics and wettability of the binding phase were discussed. The results indicated that the characteristic melting temperature was the lowest and wettability was the best at nCaO∶nFe2O3=1∶1 (without addition); the addition of MgO increased the characteristic melting temperature and contact angles; when the percentage of SiO2 or Al2O3 was 3%,the characteristic melting temperature was the lowest,whereas the contact angles increased with an increase in SiO2 and Al2O3 contents.