In underwater applications of contactless power transmission(CLPT) systems,high pressure and noncoaxial operations will change the parameters of electromagnetic(EM) couplers.As a result,the system will divert from its...In underwater applications of contactless power transmission(CLPT) systems,high pressure and noncoaxial operations will change the parameters of electromagnetic(EM) couplers.As a result,the system will divert from its optimum performance.Using a reluctance modeling method,we investigated the gap effects on the EM coupler in deep-sea environment.Calculations and measurements were performed to analyze the influence of high pressure and noncoaxial alignments on the coupler.It was shown that it is useful to set a relatively large gap between cores to reduce the influence of pressure.Experiments were carried out to verify the transferring capacity of the designed coupler and system for a fixed frequency.The results showed that an EM coupler with a large gap can serve a stable and efficient power transmission for the CLPT system.The designed system can transfer more than 400 W electrical power with a 2-mm gap in the EM coupler,and the efficiency was up to 90% coaxially and 87% non-coaxially in 40 MPa salt water.Finally,a mechanical layout of a 400 W EM coupler for the underwater application in 4000-m deep sea was proposed.展开更多
S/SP非接触谐振变换器因为对系统参数变化尤其是变压器的耦合系数变化不太敏感,具有良好的应用前景。但该变换器中主要波形谐波含量较大,导致基波分析方法误差较大,直接影响到变换器的参数设计以及控制的有效性。为此论文对变换器的时...S/SP非接触谐振变换器因为对系统参数变化尤其是变压器的耦合系数变化不太敏感,具有良好的应用前景。但该变换器中主要波形谐波含量较大,导致基波分析方法误差较大,直接影响到变换器的参数设计以及控制的有效性。为此论文对变换器的时域特性展开研究。论文考虑谐波影响,推导谐振网络的通用等效电路,揭示谐波产生的原因,建立谐振腔各波形的定量表达式。在时域波形分析的基础上,论文进一步研究变换器的输出增益特性,推导精确的电压增益并指出基波分析方法结果偏大的原因。最后,设计一台1.5 k W的S/SP非接触谐振变换器,特征波形、电压增益的实验与分析结果吻合良好,验证了论文所采用的时域特性分析方法的正确性。展开更多
基金supported by the National High-Tech R & D Program (863) of China (No 2007AA091201)the Natural Science Foundation of Zhejiang Province, China (No Y5090117)the Qianjiang Excellence Project of Zhejiang Province, China (No 2009R10036)
文摘In underwater applications of contactless power transmission(CLPT) systems,high pressure and noncoaxial operations will change the parameters of electromagnetic(EM) couplers.As a result,the system will divert from its optimum performance.Using a reluctance modeling method,we investigated the gap effects on the EM coupler in deep-sea environment.Calculations and measurements were performed to analyze the influence of high pressure and noncoaxial alignments on the coupler.It was shown that it is useful to set a relatively large gap between cores to reduce the influence of pressure.Experiments were carried out to verify the transferring capacity of the designed coupler and system for a fixed frequency.The results showed that an EM coupler with a large gap can serve a stable and efficient power transmission for the CLPT system.The designed system can transfer more than 400 W electrical power with a 2-mm gap in the EM coupler,and the efficiency was up to 90% coaxially and 87% non-coaxially in 40 MPa salt water.Finally,a mechanical layout of a 400 W EM coupler for the underwater application in 4000-m deep sea was proposed.
基金国家自然科学基金项目(5107706951377081)香港政府研究基金(Poly U 5274/13E)~~
文摘S/SP非接触谐振变换器因为对系统参数变化尤其是变压器的耦合系数变化不太敏感,具有良好的应用前景。但该变换器中主要波形谐波含量较大,导致基波分析方法误差较大,直接影响到变换器的参数设计以及控制的有效性。为此论文对变换器的时域特性展开研究。论文考虑谐波影响,推导谐振网络的通用等效电路,揭示谐波产生的原因,建立谐振腔各波形的定量表达式。在时域波形分析的基础上,论文进一步研究变换器的输出增益特性,推导精确的电压增益并指出基波分析方法结果偏大的原因。最后,设计一台1.5 k W的S/SP非接触谐振变换器,特征波形、电压增益的实验与分析结果吻合良好,验证了论文所采用的时域特性分析方法的正确性。