A new analytical method using Back-Propagation (BP) artificial neural networks and spectrophotometry for simultaneous determination of calcium and magnesium in tap water, the Yellow River water and seawater is estab...A new analytical method using Back-Propagation (BP) artificial neural networks and spectrophotometry for simultaneous determination of calcium and magnesium in tap water, the Yellow River water and seawater is established. By condition experiment, the optimum analytical conditions for calcium, magnesium and Arsenazo (Ⅲ) color reactions are obtained. Levenberg- Marquart (L-M) algorithm is used for calculation in BP neural network. The topological structure of three-layer BP ANN network architecture is chosen as 11-10-2 (nodes). The initial value of gradient coefficient μ is fixed at 0.001 and the increase factor and reduction factor of kt take the default values of the system. The data are processed by computers with our own programs written in MATLAB 7.0. The relative standard deviations of the calculated results for calcium and magnesium are 2.31% and 2.14%, respectively. The results of standard addition method show that the recoveries of calcium and magnesium are 103.6% and 100.8% in the tap water, 103.2% and 96.6% in the Yellow River water (Lijin district of Shandong Province), and 98.8%-103.3% and 98.43%-103.4% in seawater from Jiaozhou Bay of Qingdao. It is found that 14 common cations and anions do not interfere with the determination of calcium and magnesium under the optimum experimental conditions. The comparative experiments do not show any obvious differ- ence between the results obtained by this new method and those obtained by the classical complexometric titration method in seawater medium. This method exhibits good reproducibility and high accuracy in the determination of calcium and magnesium and can be used for the simultaneous determination of Ca^2+ and Mg^2+ in tap water and natural water.展开更多
Inductively coupled plasma optical emission spectrometric approach(ICP-OES)is used to determine the magnesium and aluminum content as principal components in pyrotechnic compositions used for fireworks and firecrack...Inductively coupled plasma optical emission spectrometric approach(ICP-OES)is used to determine the magnesium and aluminum content as principal components in pyrotechnic compositions used for fireworks and firecrackers. Elements of magnesium and aluminum are commonly found in aluminum powder or magnesium-aluminum alloy powder in pyrotechnic compositions in fireworks and firecrackers. Statistical analysis shows that the magnesium content in pyrotechnics is between 8% to 30% and the aluminum content is between 8% to 35%(roughly).Concept of this method: suppose the weight of the sample is 400rag,constant volume is IL and the concentlation of magnesium and aluminum is between 12mg/L to 160mg/L in sample solution, the determination scope of the method for magnesium and aluminum content would be between 3% to 40%.Further experiments proved that the fitting correlation coefficient of the magnesium calibration curve is 0.9999 or higher, recovery is 101.01% -101.96%.The fitting correlation coefficient of the aluminum calibration curve is 0.9999 or higher, recovery is 99.36%-103.07%. The allowable differential value is 0.4% between two single tests under repeatable conditions. This method can completely satisfy the requirements of the fireworks and firecrackers industry with high accuracy and good precision.展开更多
Many researchers have explored the inclusion modification mechanism to improve non-metallic inclusion modifications in steelmaking. In this study, two types of industrial trials on inclusion modifications in liquid st...Many researchers have explored the inclusion modification mechanism to improve non-metallic inclusion modifications in steelmaking. In this study, two types of industrial trials on inclusion modifications in liquid steel were conducted using ultra-low-carbon Al-killed steel with different Mg and Ca contents to verify the effects of Ca and Mg contents on the modification mechanism of Al_2O_3-based inclusions during secondary refining. The results showed that Al_2O_3-based inclusions can be modified into liquid calcium aluminate or a multi-component inclusion with the addition of a suitable amount of Ca. In addition, [Mg] in liquid steel can further reduce CaO in liquid calcium aluminate to drive its evolution into CaO–MgO–Al_2O_3 multi-component inclusions. Thermodynamic analysis confirmed that the reaction between [Mg] and CaO in liquid calcium aluminate occurs when the MgO content of liquid calcium aluminate is less than 3 wt% and the temperature is higher than 1843 K.展开更多
This standard specifies the method summary, reagents, apparatus, sampling, procedure, test results calculation and permissible tolerance of the determination of magnesium oxide by CyDTA volumetric method.
It is know from literature that small additions(<1 wt%)of Ca,Al and Zn significantly improve the intrinsic ductility of Mg.The exact role of each element,both qualitatively and quantitatively,and their combined eff...It is know from literature that small additions(<1 wt%)of Ca,Al and Zn significantly improve the intrinsic ductility of Mg.The exact role of each element,both qualitatively and quantitatively,and their combined effects,however,are poorly understood.Here we achieved a much clearer view on the quantitative role of each element with respect to ductility improvement and on the collaborative effect,particularly of Ca and Zn in Mg.Some of our findings and conclusions are in disagreement with data and interpretation found in literature.Four different alloys,namely,Mg-0.1 Ca,Mg-0.1 Ca-1 Al,Mg-0.05 Ca-1 Al,Mg-0.1 Ca-2 Al-1 Zn(all are in wt%)were selected for this investigation.All alloys were treated such that approx.similar grain sizes and textures were obtained.This largely excludes the effect of extrinsic factors on ductility.EBSD-guided slip trace analyses reveal that the addition of Ca eases activation of prismatic and pyramidal II slip systems.Using in-situ deformation experiments in SEM and atom probe tomography observations of grain boundaries direct evidence is given for the individual and synergetic effects of Ca and Zn on grain boundary cohesion as an important contribution to improve the ductility of these alloys.We conclude that Ca reduces the slip anisotropy and ameliorates ductility,however,the weak grain boundary cohesion in the Mg-0.1 wt%Ca alloy limits the material’s tensile ductility.The addition of Zn alters the Ca segregation at the grain boundaries and helps to retain their cohesive strength,an effect which thus enables higher ductility and strength.The further addition of Al primarily improves the strength.The results show that the balanced influence of reduced slip anisotropy on the one hand and increased grain boundary cohesion on the other hand allow to design a high strength high ductility rare-earth free Mg alloy.展开更多
文摘A new analytical method using Back-Propagation (BP) artificial neural networks and spectrophotometry for simultaneous determination of calcium and magnesium in tap water, the Yellow River water and seawater is established. By condition experiment, the optimum analytical conditions for calcium, magnesium and Arsenazo (Ⅲ) color reactions are obtained. Levenberg- Marquart (L-M) algorithm is used for calculation in BP neural network. The topological structure of three-layer BP ANN network architecture is chosen as 11-10-2 (nodes). The initial value of gradient coefficient μ is fixed at 0.001 and the increase factor and reduction factor of kt take the default values of the system. The data are processed by computers with our own programs written in MATLAB 7.0. The relative standard deviations of the calculated results for calcium and magnesium are 2.31% and 2.14%, respectively. The results of standard addition method show that the recoveries of calcium and magnesium are 103.6% and 100.8% in the tap water, 103.2% and 96.6% in the Yellow River water (Lijin district of Shandong Province), and 98.8%-103.3% and 98.43%-103.4% in seawater from Jiaozhou Bay of Qingdao. It is found that 14 common cations and anions do not interfere with the determination of calcium and magnesium under the optimum experimental conditions. The comparative experiments do not show any obvious differ- ence between the results obtained by this new method and those obtained by the classical complexometric titration method in seawater medium. This method exhibits good reproducibility and high accuracy in the determination of calcium and magnesium and can be used for the simultaneous determination of Ca^2+ and Mg^2+ in tap water and natural water.
文摘Inductively coupled plasma optical emission spectrometric approach(ICP-OES)is used to determine the magnesium and aluminum content as principal components in pyrotechnic compositions used for fireworks and firecrackers. Elements of magnesium and aluminum are commonly found in aluminum powder or magnesium-aluminum alloy powder in pyrotechnic compositions in fireworks and firecrackers. Statistical analysis shows that the magnesium content in pyrotechnics is between 8% to 30% and the aluminum content is between 8% to 35%(roughly).Concept of this method: suppose the weight of the sample is 400rag,constant volume is IL and the concentlation of magnesium and aluminum is between 12mg/L to 160mg/L in sample solution, the determination scope of the method for magnesium and aluminum content would be between 3% to 40%.Further experiments proved that the fitting correlation coefficient of the magnesium calibration curve is 0.9999 or higher, recovery is 101.01% -101.96%.The fitting correlation coefficient of the aluminum calibration curve is 0.9999 or higher, recovery is 99.36%-103.07%. The allowable differential value is 0.4% between two single tests under repeatable conditions. This method can completely satisfy the requirements of the fireworks and firecrackers industry with high accuracy and good precision.
基金financially supported by the Fundamental Research Funds for the Central Universities (No. FRF-TP-16-079A1)the National Science Foundation for Young Scientists of China (No. 51704021)+1 种基金the Joint Funds of National Natural Science Foundation of China (No. U1560203)supported by Beijing Key Laboratory of Special Melting and Preparation of High-end Metal Materials
文摘Many researchers have explored the inclusion modification mechanism to improve non-metallic inclusion modifications in steelmaking. In this study, two types of industrial trials on inclusion modifications in liquid steel were conducted using ultra-low-carbon Al-killed steel with different Mg and Ca contents to verify the effects of Ca and Mg contents on the modification mechanism of Al_2O_3-based inclusions during secondary refining. The results showed that Al_2O_3-based inclusions can be modified into liquid calcium aluminate or a multi-component inclusion with the addition of a suitable amount of Ca. In addition, [Mg] in liquid steel can further reduce CaO in liquid calcium aluminate to drive its evolution into CaO–MgO–Al_2O_3 multi-component inclusions. Thermodynamic analysis confirmed that the reaction between [Mg] and CaO in liquid calcium aluminate occurs when the MgO content of liquid calcium aluminate is less than 3 wt% and the temperature is higher than 1843 K.
文摘This standard specifies the method summary, reagents, apparatus, sampling, procedure, test results calculation and permissible tolerance of the determination of magnesium oxide by CyDTA volumetric method.
基金the financial support by the international doctoral school IMPRS,Surmat。
文摘It is know from literature that small additions(<1 wt%)of Ca,Al and Zn significantly improve the intrinsic ductility of Mg.The exact role of each element,both qualitatively and quantitatively,and their combined effects,however,are poorly understood.Here we achieved a much clearer view on the quantitative role of each element with respect to ductility improvement and on the collaborative effect,particularly of Ca and Zn in Mg.Some of our findings and conclusions are in disagreement with data and interpretation found in literature.Four different alloys,namely,Mg-0.1 Ca,Mg-0.1 Ca-1 Al,Mg-0.05 Ca-1 Al,Mg-0.1 Ca-2 Al-1 Zn(all are in wt%)were selected for this investigation.All alloys were treated such that approx.similar grain sizes and textures were obtained.This largely excludes the effect of extrinsic factors on ductility.EBSD-guided slip trace analyses reveal that the addition of Ca eases activation of prismatic and pyramidal II slip systems.Using in-situ deformation experiments in SEM and atom probe tomography observations of grain boundaries direct evidence is given for the individual and synergetic effects of Ca and Zn on grain boundary cohesion as an important contribution to improve the ductility of these alloys.We conclude that Ca reduces the slip anisotropy and ameliorates ductility,however,the weak grain boundary cohesion in the Mg-0.1 wt%Ca alloy limits the material’s tensile ductility.The addition of Zn alters the Ca segregation at the grain boundaries and helps to retain their cohesive strength,an effect which thus enables higher ductility and strength.The further addition of Al primarily improves the strength.The results show that the balanced influence of reduced slip anisotropy on the one hand and increased grain boundary cohesion on the other hand allow to design a high strength high ductility rare-earth free Mg alloy.