We select a sample of quiescent luminous red galaxies (LRGs) from the Sloan Digital Sky Survey Data Release 7 with a high signal-to-noise ratio (S/N) to study the consistency of fitting the full spectrum by using ...We select a sample of quiescent luminous red galaxies (LRGs) from the Sloan Digital Sky Survey Data Release 7 with a high signal-to-noise ratio (S/N) to study the consistency of fitting the full spectrum by using different packages, mainly, ULySS and STARLIGHT. The spectrum of each galaxy in the sample is fitted by the full spectrum fitting packages ULySS and STARLIGHT. We find: (1) for spec- tra with higher S/Ns, the ages of stellar populations obtained from ULySS are slightly older than those from STARLIGHT, and metallicities derived from ULySS are slightly richer than those from STARLIGHT. In general, both packages can give roughly con- sistent fitting results. (2) For low S/N spectra, it is possible that the fitting by ULySS can become trapped at some local minimum in the parameter space during execution and thus may give unreliable results, but STARLIGHT can still give reliable results. Based on the fitting results of LRGs, we further analyze their star formation history and the relation between their age and velocity dispersion, and find that they agree well with conclusions from previous works.展开更多
By simulating the evolution of spin periods of magnetized neutron stars which interact with their environment in binary systems,we investigate the Galactic population of high mass X-ray binaries(HMXBs) .The number o...By simulating the evolution of spin periods of magnetized neutron stars which interact with their environment in binary systems,we investigate the Galactic population of high mass X-ray binaries(HMXBs) .The number of HMXBs in the Galaxy is between 190 and 240,and their birthrate is from 5.9×10-5 yr-1 to 6.3× 10-5 yr-1.Comparing the Corbet diagram(the positions of the spin periods vs.the orbital periods of HMXBs) in our model with the associated observations,we find that the stellar wind structure and the process of matter transfer are very important for understanding HMXBs.展开更多
We use two methods of constructing the initial mass distribution, the traditional way and Monte Carlo simulation, to obtain integrated U - B, B - V,V-R and V-I colours and absorption-line indices defined by the Lick O...We use two methods of constructing the initial mass distribution, the traditional way and Monte Carlo simulation, to obtain integrated U - B, B - V,V-R and V-I colours and absorption-line indices defined by the Lick Observatory image dissector scanner (referred to as Lick/IDS), for instantaneous burst solarmetallicity single stellar populations with ages in the range 1-15Gyr. We find that the evolutionary curves of all colours obtained by the traditional method are smoother than those by Monte Carlo simulation, that the U- B and B- V colours obtained by the two methods agree with one another, while the V - R and V - I colours by the traditional method are bluer than those by Monte Carlo simulation.A comparison of the Lick/IDS absorption-line indices shows that the variations in all the indices by the traditional method are smoother than that for the Monte Carlo simulation, and that all the indices except for TiO1 and TiO2 are consistent with those for the Monte Carlo simulation.展开更多
We apply a new statistical analysis technique, the Mean Field approach to Independent Component Analysis(MF-ICA) in a Bayseian framework, to galaxy spectral analysis. This algorithm can compress a stellar spectral l...We apply a new statistical analysis technique, the Mean Field approach to Independent Component Analysis(MF-ICA) in a Bayseian framework, to galaxy spectral analysis. This algorithm can compress a stellar spectral library into a few Independent Components(ICs), and the galaxy spectrum can be reconstructed by these ICs. Compared to other algorithms which decompose a galaxy spectrum into a combination of several simple stellar populations, the MF-ICA approach offers a large improvement in efficiency. To check the reliability of this spectral analysis method, three different methods are used:(1) parameter recovery for simulated galaxies,(2) comparison with parameters estimated by other methods, and(3) consistency test of parameters derived with galaxies from the Sloan Digital Sky Survey. We find that our MF-ICA method can not only fit the observed galaxy spectra efficiently, but can also accurately recover the physical parameters of galaxies. We also apply our spectral analysis method to the DEEP2 spectroscopic data, and find it can provide excellent fitting results for low signal-to-noise spectra.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 11033001 and 11073024)
文摘We select a sample of quiescent luminous red galaxies (LRGs) from the Sloan Digital Sky Survey Data Release 7 with a high signal-to-noise ratio (S/N) to study the consistency of fitting the full spectrum by using different packages, mainly, ULySS and STARLIGHT. The spectrum of each galaxy in the sample is fitted by the full spectrum fitting packages ULySS and STARLIGHT. We find: (1) for spec- tra with higher S/Ns, the ages of stellar populations obtained from ULySS are slightly older than those from STARLIGHT, and metallicities derived from ULySS are slightly richer than those from STARLIGHT. In general, both packages can give roughly con- sistent fitting results. (2) For low S/N spectra, it is possible that the fitting by ULySS can become trapped at some local minimum in the parameter space during execution and thus may give unreliable results, but STARLIGHT can still give reliable results. Based on the fitting results of LRGs, we further analyze their star formation history and the relation between their age and velocity dispersion, and find that they agree well with conclusions from previous works.
基金supported by the National Natural Science Foundation of China (Grant Nos.10763001,10963003 and 11063002)the Natural Science Foundation of Xinjiang (Nos.2009211B01 and 2010211B05)+1 种基金the Foundation of Huoyingdong(No.121107)the Scientific Research Program of the Higher Education Institutions of Xinjiang(No.XJEDU2008S12)
文摘By simulating the evolution of spin periods of magnetized neutron stars which interact with their environment in binary systems,we investigate the Galactic population of high mass X-ray binaries(HMXBs) .The number of HMXBs in the Galaxy is between 190 and 240,and their birthrate is from 5.9×10-5 yr-1 to 6.3× 10-5 yr-1.Comparing the Corbet diagram(the positions of the spin periods vs.the orbital periods of HMXBs) in our model with the associated observations,we find that the stellar wind structure and the process of matter transfer are very important for understanding HMXBs.
基金Supported by the National Natural Science Foundation of China.
文摘We use two methods of constructing the initial mass distribution, the traditional way and Monte Carlo simulation, to obtain integrated U - B, B - V,V-R and V-I colours and absorption-line indices defined by the Lick Observatory image dissector scanner (referred to as Lick/IDS), for instantaneous burst solarmetallicity single stellar populations with ages in the range 1-15Gyr. We find that the evolutionary curves of all colours obtained by the traditional method are smoother than those by Monte Carlo simulation, that the U- B and B- V colours obtained by the two methods agree with one another, while the V - R and V - I colours by the traditional method are bluer than those by Monte Carlo simulation.A comparison of the Lick/IDS absorption-line indices shows that the variations in all the indices by the traditional method are smoother than that for the Monte Carlo simulation, and that all the indices except for TiO1 and TiO2 are consistent with those for the Monte Carlo simulation.
基金supported by the Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences (No. XDB09000000)the National Basic Research Program of China (973 Program) (2015CB857004)the National Natural Science Foundation of China (NSFC, Nos. 11225315, 1320101002, 11433005 and 11421303)
文摘We apply a new statistical analysis technique, the Mean Field approach to Independent Component Analysis(MF-ICA) in a Bayseian framework, to galaxy spectral analysis. This algorithm can compress a stellar spectral library into a few Independent Components(ICs), and the galaxy spectrum can be reconstructed by these ICs. Compared to other algorithms which decompose a galaxy spectrum into a combination of several simple stellar populations, the MF-ICA approach offers a large improvement in efficiency. To check the reliability of this spectral analysis method, three different methods are used:(1) parameter recovery for simulated galaxies,(2) comparison with parameters estimated by other methods, and(3) consistency test of parameters derived with galaxies from the Sloan Digital Sky Survey. We find that our MF-ICA method can not only fit the observed galaxy spectra efficiently, but can also accurately recover the physical parameters of galaxies. We also apply our spectral analysis method to the DEEP2 spectroscopic data, and find it can provide excellent fitting results for low signal-to-noise spectra.