This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed ac...This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed active learning scheme employs similarity measure to check the current version space and selects images with maximum expected information gain to solicit user's label. Finally, the learned query is refined based on the user's further feedback. With the combination of SVM classifier and similarity measure, the proposed method can alleviate model bias existing in each of them. Our experiments on several query concepts show that the proposed method can learn the user's query concept quickly and effectively only with several iterations.展开更多
Much attention has been paid to relevant feedback in intelligent computation for social computing, especially in content-based image retrieval which based on WeChat platform for the medical auxiliary. It has a good ef...Much attention has been paid to relevant feedback in intelligent computation for social computing, especially in content-based image retrieval which based on WeChat platform for the medical auxiliary. It has a good effect on reducing the semantic gap between high semantics and low semantics of images. There are many kinds of support vector machines (SVM) based relevance feedback methods in image retrieval, but all of them may encounter some problems, such as a small size of sample, an asymmetric positive sample and negative sample as well as a long feedback cycle. To deal with these problems, an improved asymmetric bagging (IAB) relevance feedback algorithm is proposed. Furthermore, we apply a new fuzzy support machine (FSVM) to cooperate with IAB. To solve the over-fitting and real-time problems, we use modified local binary patterns (MLBP) as image features. Finally, experimental results demonstrate that our method performs other methods in terms of improving retrieval precision as well as retrieval efficiency.展开更多
With the rapid development of satellite remote sensing technology and an ever-increasing number of Earth observation satellites being launched,the global volume of remotely sensed imagery has been growing exponentiall...With the rapid development of satellite remote sensing technology and an ever-increasing number of Earth observation satellites being launched,the global volume of remotely sensed imagery has been growing exponentially.Processing the variety of remotely sensed data has increasingly been complex and difficult.It is also hard to efficiently and intelligently retrieve what users need from a massive database of images.This paper introduces an improved support vector machine(SVM)model,which optimizes the model parameters and selects the feature subset based on the particle swarm optimization(PSO)method and genetic algorithm(GA)for remote sensing image retrieval.The results from an image retrieval experiment show that our method outperforms traditional methods such as GRID,PSO,and GA in terms of consistency and stability.展开更多
In this paper, region features and relevance feedback are used to improve the performance of CBIR. Unlike existing region-based approaches where either individual regions are used or only simple spatial layout is mode...In this paper, region features and relevance feedback are used to improve the performance of CBIR. Unlike existing region-based approaches where either individual regions are used or only simple spatial layout is modeled, the proposed approach simultaneously models both region properties and their spatial relationships in a probabilistic framework. Furthermore, the retrieval performance is improved by an adaptive filter based relevance feedback. To illustrate the performance of the proposed approach, extensive experiments have been carried out on a large heterogeneous image collection with 17,000 images, which render promising results on a wide variety of queries.展开更多
文摘This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed active learning scheme employs similarity measure to check the current version space and selects images with maximum expected information gain to solicit user's label. Finally, the learned query is refined based on the user's further feedback. With the combination of SVM classifier and similarity measure, the proposed method can alleviate model bias existing in each of them. Our experiments on several query concepts show that the proposed method can learn the user's query concept quickly and effectively only with several iterations.
基金This work is supported by the National Natural Science Foundation of China (No. 61472161, 61133011, 61402195, 61502198, 61303132, 61202308), Science & Technology Development Project of Jilin Province (No. 20140101201JC).
文摘Much attention has been paid to relevant feedback in intelligent computation for social computing, especially in content-based image retrieval which based on WeChat platform for the medical auxiliary. It has a good effect on reducing the semantic gap between high semantics and low semantics of images. There are many kinds of support vector machines (SVM) based relevance feedback methods in image retrieval, but all of them may encounter some problems, such as a small size of sample, an asymmetric positive sample and negative sample as well as a long feedback cycle. To deal with these problems, an improved asymmetric bagging (IAB) relevance feedback algorithm is proposed. Furthermore, we apply a new fuzzy support machine (FSVM) to cooperate with IAB. To solve the over-fitting and real-time problems, we use modified local binary patterns (MLBP) as image features. Finally, experimental results demonstrate that our method performs other methods in terms of improving retrieval precision as well as retrieval efficiency.
基金The authors would like to thank the Youth Council Project for the promotion of innovationas well as the Chinese Academy of Sciences and the National Natural Science Foundation for Young Scientists of China,No.40701105.
文摘With the rapid development of satellite remote sensing technology and an ever-increasing number of Earth observation satellites being launched,the global volume of remotely sensed imagery has been growing exponentially.Processing the variety of remotely sensed data has increasingly been complex and difficult.It is also hard to efficiently and intelligently retrieve what users need from a massive database of images.This paper introduces an improved support vector machine(SVM)model,which optimizes the model parameters and selects the feature subset based on the particle swarm optimization(PSO)method and genetic algorithm(GA)for remote sensing image retrieval.The results from an image retrieval experiment show that our method outperforms traditional methods such as GRID,PSO,and GA in terms of consistency and stability.
文摘In this paper, region features and relevance feedback are used to improve the performance of CBIR. Unlike existing region-based approaches where either individual regions are used or only simple spatial layout is modeled, the proposed approach simultaneously models both region properties and their spatial relationships in a probabilistic framework. Furthermore, the retrieval performance is improved by an adaptive filter based relevance feedback. To illustrate the performance of the proposed approach, extensive experiments have been carried out on a large heterogeneous image collection with 17,000 images, which render promising results on a wide variety of queries.