In this paper, region features and relevance feedback are used to improve the performance of CBIR. Unlike existing region-based approaches where either individual regions are used or only simple spatial layout is mode...In this paper, region features and relevance feedback are used to improve the performance of CBIR. Unlike existing region-based approaches where either individual regions are used or only simple spatial layout is modeled, the proposed approach simultaneously models both region properties and their spatial relationships in a probabilistic framework. Furthermore, the retrieval performance is improved by an adaptive filter based relevance feedback. To illustrate the performance of the proposed approach, extensive experiments have been carried out on a large heterogeneous image collection with 17,000 images, which render promising results on a wide variety of queries.展开更多
文摘In this paper, region features and relevance feedback are used to improve the performance of CBIR. Unlike existing region-based approaches where either individual regions are used or only simple spatial layout is modeled, the proposed approach simultaneously models both region properties and their spatial relationships in a probabilistic framework. Furthermore, the retrieval performance is improved by an adaptive filter based relevance feedback. To illustrate the performance of the proposed approach, extensive experiments have been carried out on a large heterogeneous image collection with 17,000 images, which render promising results on a wide variety of queries.