期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
目标检测算法YOLOv5s用于柑桔成熟果实检测的改进 被引量:2
1
作者 蹇川 郑永强 +4 位作者 刘艳梅 马岩岩 易时来 吕强 谢让金 《中国南方果树》 北大核心 2024年第1期224-231,共8页
巡检机器人精准检测成熟柑桔果实,对于保证柑桔果园产量巡检作业效率和质量至关重要。考虑到成熟柑桔果实特有的颜色空间、果实遮挡导致的小目标以及巡检机器人有限的硬件资源,提出一种简单有效的基于YOLOv5s的柑桔成熟果实检测方法—... 巡检机器人精准检测成熟柑桔果实,对于保证柑桔果园产量巡检作业效率和质量至关重要。考虑到成熟柑桔果实特有的颜色空间、果实遮挡导致的小目标以及巡检机器人有限的硬件资源,提出一种简单有效的基于YOLOv5s的柑桔成熟果实检测方法———改进YOLOv5s。改进YOLOv5s,主要设计一个由3层Context Aggregation Block(CABlock)组成的金字塔结构特征提取层并将其插入到YOLOv5s网络的Head部分。改进YOLOv5s模型具有如下优点:(1)集成的底层CABlock通过特征通道注意力机制和空间注意力机制,能更好更快地学习小目标局部成熟果实颜色和纹理特征、重叠果实边缘特征;(2)多层CABlock构建的特征金字塔能够有效地避免小目标随网络深度增加而消失,从而降低小目标果实漏检率。柑桔成熟果实识别验证试验结果表明,改进YOLOv5s的检测准确率和平均精度分别为98.21%和98.07%,较原始YOLOv5s分别提升了0.31和0.17百分点,较FasterR-CNN分别提升了8.41和8.31百分点,识别遮挡果实、重叠果实以及小目标果实的平均精度分别为99.4%、97.2%和98.0%;单张成熟柑桔果实图像的平均检测时间32.5ms,模型占用内存15.8 MB。该改进YOLOv5s模型可实现果园自然环境下柑桔成熟果实快速准确地检测识别与产量预估,可为柑桔果园巡检机器人产量巡检提供技术支持。 展开更多
关键词 柑桔 成熟果实 YOLOv5s context aggregation Block 目标检测 产量预估
下载PDF
Unrolling a rain-guided detail recovery network for single-image deraining
2
作者 Kailong LIN Shaowei ZHANG +1 位作者 Yu LUO Jie LING 《Virtual Reality & Intelligent Hardware》 2023年第1期11-23,共13页
Background Owing to the rapid development of deep networks, single-image deraining tasks have progressed significantly. Various architectures have been designed to recursively or directly remove rain, and most rain st... Background Owing to the rapid development of deep networks, single-image deraining tasks have progressed significantly. Various architectures have been designed to recursively or directly remove rain, and most rain streaks can be removed using existing deraining methods. However, many of them cause detail loss, resulting in visual artifacts. Method To resolve this issue, we propose a novel unrolling rain-guided detail recovery network(URDRN) for single-image deraining based on the observation that the most degraded areas of a background image tend to be the most rain-corrupted regions. Furthermore, to address the problem that most existing deep-learningbased methods trivialize the observation model and simply learn end-to-end mapping, the proposed URDRN unrolls a single-image deraining task into two subproblems: rain extraction and detail recovery. Result Specifically, first, a context aggregation attention network is introduced to effectively extract rain streaks;thereafter, a rain attention map is generated as an indicator to guide the detail recovery process. For the detail recovery sub-network, with the guidance of the rain attention map, a simple encoder–decoder model is sufficient to recover the lost details.Experiments on several well-known benchmark datasets show that the proposed approach can achieve performance similar to those of other state-of-the-art methods. 展开更多
关键词 Image deraining Rain attention Detail recovery Unrolling network context aggregation attention
下载PDF
MSCANet: multiscale context information aggregation network for Tibetan Plateau lake extraction from remote sensing images
3
作者 Zhihui Tian Xiaoyu Guo +3 位作者 Xiaohui He Panle Li Xijjie Cheng Guangsheng Zhou 《International Journal of Digital Earth》 SCIE EI 2023年第1期1-30,共30页
Qinghai-Tibet Plateau lakes are important carriers of water resources in the‘Asian’s Water Tower’,and it is of great significance to grasp the spatial distribution of plateau lakes for the climate,ecological enviro... Qinghai-Tibet Plateau lakes are important carriers of water resources in the‘Asian’s Water Tower’,and it is of great significance to grasp the spatial distribution of plateau lakes for the climate,ecological environment,and regional water cycle.However,the differences in spatial-spectral characteristics of various types of plateau lakes,and the complex background information of plateau both influence the extraction effect of lakes.Therefore,it is a great challenge to completely and effectively extract plateau lakes.In this study,we proposed a multiscale contextual information aggregation network,termed MSCANet,to automatically extract Plateau lake regions.It consists of three main components:a multiscale lake feature encoder,a feature decoder,and a Multicore Pyramid Pooling Module(MPPM).The multiscale lake feature encoder suppressed noise interference to capture multiscale spatial-spectral information from heterogeneous scenes.The MPPM module aggregated the contextual information of various lakes globally.We applied the MSCANet to the lake extraction of the Qinghai-Tibet Plateau based on Google data;additionally,comparative experiments showed that the MSCANet proposed had obvious improvement in lake detection accuracy and morphological integrity.Finally,we transferred the pre-trained optimal model to the Landsat-8 and Sentinel-2A dataset to verify the generalization of the MSCANet. 展开更多
关键词 Remote sensing imagery The Qinghai-Tibet Plateau lake extraction deep learning multiscale feature context information aggregation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部