期刊文献+
共找到296篇文章
< 1 2 15 >
每页显示 20 50 100
通用人工智能中的Long-Context技术分析
1
作者 赵立东 郭敬明 蒋燕 《集成电路应用》 2024年第6期410-412,共3页
阐述通用人工智能中的Long-Context技术原理,提出该技术的解决方案,包括位置编码外推、注意力机制计算优化、模型结构优化和检索增强生成。分析硬件系统的瓶颈,探讨Long-Context在通用人工智能时代的发展趋势。
关键词 Long-context 位置编码 注意力机制 检索增强生成
下载PDF
基于上下文提取与注意力融合的遮挡服装图像分割
2
作者 顾梅花 花玮 +1 位作者 董晓晓 张晓丹 《纺织学报》 EI CAS CSCD 北大核心 2024年第5期155-164,共10页
针对遮挡服装图像分割准确率低的问题,提出一种融合上下文提取与注意力机制的遮挡服装图像实例分割方法。以Mask R-CNN为基础网络,首先采用上下文提取模块优化ResNet的输出特征,通过融合不同速率的多路径特征从多个感受野中捕获图像的... 针对遮挡服装图像分割准确率低的问题,提出一种融合上下文提取与注意力机制的遮挡服装图像实例分割方法。以Mask R-CNN为基础网络,首先采用上下文提取模块优化ResNet的输出特征,通过融合不同速率的多路径特征从多个感受野中捕获图像的上下文信息,强化遮挡服装特征表示的识别及提取能力;然后引入通道注意力机制与空间注意力机制的残差连接,自适应地专注于捕捉遮挡服装图像的空间和通道维度上的语义相互依赖关系,降低上下文提取模块在处理特征图时因冗余的上下文关系扩大造成误定位与误识别的概率;最后,采用目标检测损失函数CIoU计算原理作为非极大值抑制的评判标准,关注预测框和真实框的重叠与非重叠区域,最大程度地选择遮挡服装的最优目标框,使预测框更加贴近真实框。结果表明,与其它方法相比,改进方法显著改善了不同遮挡程度服装图像的误分割现象,能提取出更精确的服装实例,其对遮挡服装图像的平均分割精度比原模型提升了4.4%。 展开更多
关键词 图像分割 遮挡服装 上下文提取 注意力机制 CIoU计算原理
下载PDF
基于上下文融合和注意力的安全帽检测方法
3
作者 徐志刚 李宇根 朱红蕾 《计算机仿真》 2024年第8期204-209,共6页
安全帽检测是近年来目标检测在工业生产作业领域的一个研究热点。针对安全帽检测过程中容易出现的小尺度目标错检、漏检等问题,提出一种基于上下文融合和注意力的安全帽检测方法。方法通过利用混合域注意力强调目标关键特征信息,加强特... 安全帽检测是近年来目标检测在工业生产作业领域的一个研究热点。针对安全帽检测过程中容易出现的小尺度目标错检、漏检等问题,提出一种基于上下文融合和注意力的安全帽检测方法。方法通过利用混合域注意力强调目标关键特征信息,加强特征提取;同时,构建基于非局部注意模块的上下文信息融合结构,将底层全局上下文信息引入深层特征中,进一步细化深层语义信息;此外,利用感受野模块捕获多尺度特征和增大感受野,以减少小尺度目标在特征融合过程中出现特征信息丢失,以及预测过程中对小尺度目标不敏感的问题。实验分析表明,上述方法在安全帽佩戴数据集上对于安全帽检测的AP值达到93.10%,较原YOLOv4提升2.12%,mAP达到93.07%,较原YOLOv4提升1.39%。 展开更多
关键词 安全帽检测 上下文融合 注意力机制
下载PDF
场景驱动下新零售商业模式创新及其价值创造的机理与策略
4
作者 喻登科 熊曼玉 +1 位作者 夏诗琦 肖欢 《创新科技》 2024年第7期26-36,共11页
数字技术颠覆了零售行业的商业模式,通过重塑人、货、场关系驱动的新零售场景,为零售商与消费者带来全新的价值体验,也为我国商品经济发展带来新活力。在文献梳理的基础上,界定新零售场景和场景价值的内涵,识别出社群、内容、时空等场... 数字技术颠覆了零售行业的商业模式,通过重塑人、货、场关系驱动的新零售场景,为零售商与消费者带来全新的价值体验,也为我国商品经济发展带来新活力。在文献梳理的基础上,界定新零售场景和场景价值的内涵,识别出社群、内容、时空等场景要素,分析功能、效率、体验、情绪等场景价值的构成维度并探究其互动关系,构建“关系—场景—价值”概念模型。此外,引入商业模式创新的概念,并将其作为价值创造的抓手,以“场景—模式—价值”为主线,建构场景驱动下新零售商业模式创新的价值创造机理理论框架,提出“应用场景新颖化创造功能价值”“交易场景时空化创造效率价值”“互动场景内容化创造体验价值”“关注场景社群化创造情绪价值”等4条创造场景价值的策略。最后,以步步高为样本开展案例分析,为价值创造机理理论提供经验证据。研究丰富了商业模式场景化理论,也为新零售企业开展商业模式创新提供了理论参考。 展开更多
关键词 新零售 商业模式 场景驱动 价值创造 机理研究
下载PDF
广州传统城市景观营建智慧研究
5
作者 唐孝祥 苏逸轩 《现代城市研究》 北大核心 2024年第7期80-87,共8页
中国传统城市景观营建智慧是彰显中华文明独特性与文化多样性的审美文化表达。广州特殊的地理位置演变出辐射整个岭南的独特景观营建模式,表现出各朝代景观特色与观景偏好,记载了不同时期自然景致与人文思想的碰撞交融。文章对宋朝至清... 中国传统城市景观营建智慧是彰显中华文明独特性与文化多样性的审美文化表达。广州特殊的地理位置演变出辐射整个岭南的独特景观营建模式,表现出各朝代景观特色与观景偏好,记载了不同时期自然景致与人文思想的碰撞交融。文章对宋朝至清朝时期广州传统城市景观营建变迁展开研究,系统阐释了影响区域城市景观营建的多尺度多维度因素。借鉴审美适应性理论从山水演变、形胜认识、空间布局等方面阐释基于营建主体的广州传统城市景观营建智慧。文章对解读和传承中华城市景观营建传统具有理论与实践的探索意义。 展开更多
关键词 风景园林美学 历史语境 城市景观 营建智慧
下载PDF
融合时序关系和上下文信息的时间动作检测方法
6
作者 王猛 杨观赐 《贵州大学学报(自然科学版)》 2024年第6期78-84,90,共8页
时间动作检测是视频理解领域中具有挑战性的任务。先前的时间动作检测模型主要关注视频帧的分类,而忽略视频帧之间的时序关系,导致时间动作检测模型的性能下降。为此,提出融合时序关系和上下文信息的时间动作检测方法(temporal action d... 时间动作检测是视频理解领域中具有挑战性的任务。先前的时间动作检测模型主要关注视频帧的分类,而忽略视频帧之间的时序关系,导致时间动作检测模型的性能下降。为此,提出融合时序关系和上下文信息的时间动作检测方法(temporal action detection based on enhanced temporal relationship and context information,ETRD)。首先,设计了基于增强局部时序关系注意力机制的全局特征编码器,关注相邻帧的时序关系;其次,构建基于上下文信息的时序特征增强模块,融合上下文信息;最后,通过头部输出分类和回归结果。实验结果表明,所提出的ETRD模型在THUMOS14和ActivityNet1.3数据集上的平均mAP(mean average precision,平均精度均值)分别达到了67.5%和36.0%。相比于Actionformer模型的66.8%和35.6%,ETRD模型的平均mAP分别提升了0.7%和0.4%。利用视觉传感器,所提出的模型可检测出行为类别和持续时间。同时,结合心率等生理信号,可实现个体健康状态管理,为远程医疗、智能监控等提供了一种解决方案。 展开更多
关键词 时间动作检测 时序关系 上下文信息 多头注意力机制 视频动作理解
下载PDF
基于改进YOLOv5的工件识别算法
7
作者 刘振宇 吕昊元 《海军航空大学学报》 2024年第4期411-420,共10页
针对工业生产流水线中工件识别速度慢、精度低的问题,提出1种基于改进YOLOv5(You Only Look Once v5)的工件识别方法,称为YOLO_Meta。对YOLOv5原有的网络架构进行多个阶段的调整,包括利用双路注意力机制模块和深度可分离卷积改进主干特... 针对工业生产流水线中工件识别速度慢、精度低的问题,提出1种基于改进YOLOv5(You Only Look Once v5)的工件识别方法,称为YOLO_Meta。对YOLOv5原有的网络架构进行多个阶段的调整,包括利用双路注意力机制模块和深度可分离卷积改进主干特征提取网络,可以更全面地提取特征;引入1种新型解耦头增强模型对各层级特征图的利用效率;利用聚类算法计算随机锚框相似度,对先验框进行过滤以及加入标签平滑算法等。基于MS COCO数据集和自制工件数据集进行实验并根据模型深度和宽度将模型分为大、中、小3款。实验结果表明:在MS COCO数据集上,大、中、小3款模型对比原模型的AP分别提高了3.4%、1.8%、6.9%。在自制工件数据集上,大模型对比原模型mAP提高了19.1%,F1分数提高了15.2%。文章提出的YOLO_Meta模型与原始模型相比,无论是稳定性还是准确率都有很大的提升,可为工件检测任务提供参考。 展开更多
关键词 计量学 YOLO 工件 稀疏注意力机制 上下文解耦头
下载PDF
CIEFRNet:面向高速公路的抛洒物检测算法 被引量:1
8
作者 李旭 宋焕生 +3 位作者 史勤 张朝阳 刘泽东 孙士杰 《计算机工程与应用》 CSCD 北大核心 2024年第5期336-346,共11页
高速公路抛洒物危及行车安全,极易诱发交通事故,及时识别并清理高速公路抛洒物十分重要。由于高速公路抛洒物在图像中面积占比小且图像背景复杂,现有检测方法常出现漏检和误检的情况。针对上述问题,提出了一种基于上下文信息增强和特征... 高速公路抛洒物危及行车安全,极易诱发交通事故,及时识别并清理高速公路抛洒物十分重要。由于高速公路抛洒物在图像中面积占比小且图像背景复杂,现有检测方法常出现漏检和误检的情况。针对上述问题,提出了一种基于上下文信息增强和特征提纯的抛洒物检测算法,记为CIEFRNet。设计了一种融合上下文Transformer的主干特征提取模块(CSP-COT),充分挖掘局部静态上下文信息和全局动态上下文信息,增强小抛洒物的特征表示;主干网络中使用改进的空间金字塔池化(ISPP),通过级联的空洞卷积实现特征的多尺度下采样,减轻目标细节信息的损失;为提高特征融合能力,设计了特征提纯模块(CNAB),其中嵌入了提出的一种混合注意力机制(ECSA),可抑制图像背景噪声,强化微小抛洒物的特征;引入基于动态非单调聚焦机制的WIoU优化损失函数,提高小抛洒物学习能力,加速网络收敛。实验结果表明,所提方法在自制的高速公路抛洒物数据集上的精确率、召回率、AP0.5和AP0.5:0.95分别达到96.5%、81.6%、88.1%和46.5%,优于当前主流的目标检测方法,其算法复杂度也更低,满足实际场景应用需要。 展开更多
关键词 抛洒物检测 上下文信息 空间金字塔池化 注意力机制 损失函数
下载PDF
基于全局与局部多尺度上下文的电表数据检测
9
作者 马天磊 符俊 +2 位作者 马琪 杨震 刘新浩 《应用光学》 CAS 北大核心 2024年第4期804-811,共8页
电力系统中配电箱的电表数据检测为电力管理和安全运行提供了重要的数据支持。传统的人工电表数据读取方法效率低下且易出错,而现有深度学习方法因模型参数量大限制了模型的应用。针对上述问题,提出了一种轻量化鲁棒的实时电表检测方法... 电力系统中配电箱的电表数据检测为电力管理和安全运行提供了重要的数据支持。传统的人工电表数据读取方法效率低下且易出错,而现有深度学习方法因模型参数量大限制了模型的应用。针对上述问题,提出了一种轻量化鲁棒的实时电表检测方法。通过减少特征提取网络的层数和通道数,减少模型的参数量,实现网络的轻量化。在减少网络参数量的同时,为了保证网络的特征表达能力和拟合能力,引入全局上下文和局部多尺度上下文丰富目标特征表达。全局上下文关注电表数据在电表箱中的位置,局部多尺度上下文适应不同尺寸的电表数据。实验结果表明,所提网络在参数量更小的情况下,仍能获得比其他检测方法更高的准确率和更快的检测速度。 展开更多
关键词 电表数据检测 全局上下文 局部上下文 深度学习 注意力机制
下载PDF
结合肺先验与协同深监督的肿瘤自动分割
10
作者 王兵 巨梦仪 +2 位作者 杨颖 张欣 翟俊海 《河北大学学报(自然科学版)》 CAS 北大核心 2024年第4期414-423,共10页
计算机断层扫描图像中复杂肺肿瘤(CLT)的自动分割面临2个挑战:1)肿瘤与邻近组织之间的类间不区分;2)肿瘤内的类内不一致性.为了解决这2个问题,提出将肺肿瘤与肺之间关系的语义上下文先验纳入分割模型中,以便于模型学习到语义上下文特征... 计算机断层扫描图像中复杂肺肿瘤(CLT)的自动分割面临2个挑战:1)肿瘤与邻近组织之间的类间不区分;2)肿瘤内的类内不一致性.为了解决这2个问题,提出将肺肿瘤与肺之间关系的语义上下文先验纳入分割模型中,以便于模型学习到语义上下文特征,并从宏观角度重新思考CLT的分割.利用信息熵对肺形状的解剖先验进行建模.在三分类的U-Net网络中嵌入提出的新型注意模块,从而通过特定领域的知识来指导训练过程.另外,设计了一个可以获得肿瘤边界结构图以及保持肿瘤内部特征一致性的边界增强辅助网络.在此基础上,开发了一个协同深度监督网络框架(CLT-ASegNet),该框架利用混合多尺度语义特征融合进一步提高了模型的判别能力和收敛速度.CLT-ASegNet在CLTCTI分割数据集和Lung16数据集上进行了评估.实验结果表明,所提出的CLT-ASegNet可以有效分割肺肿瘤. 展开更多
关键词 注意力机制 复杂肺肿瘤分割 语义上下文先验 协同深度监督
下载PDF
面向模糊医学图像边缘检测的卷积网络 被引量:1
11
作者 张陶界 周迪斌 +1 位作者 李金迪 余晨 《计算机系统应用》 2024年第2期198-206,共9页
考虑到传统边缘检测算法难以处理模糊的医学图像,提出一种基于深度学习的边缘检测网络ECENet.首先,本文网络基于CHRNet模型,对其最后两层进行剪枝,使模型更加高效和轻量化.其次,在网络的特征提取阶段加入注意力模块SKSAM,优化图像特征... 考虑到传统边缘检测算法难以处理模糊的医学图像,提出一种基于深度学习的边缘检测网络ECENet.首先,本文网络基于CHRNet模型,对其最后两层进行剪枝,使模型更加高效和轻量化.其次,在网络的特征提取阶段加入注意力模块SKSAM,优化图像特征的自适应提取,并降低噪声的影响.最后,在多尺度的网络输出上采用上下文感知融合块进行连接,帮助模型更好地理解图像的结构和语义信息.此外,综合考虑像素级别的准确性和边界的平滑性,优化了损失函数,为模型训练提供更好的梯度信号.实验结果表明:本文算法在最佳数据集规模(ODS)和最佳图像比例(OIS)指标分别提高到0.816和0.823;相关边缘指标参数显著提高,PSNR提高了16.8%,SSIM提高了37.6%. 展开更多
关键词 深度学习 边缘检测 卷积神经网络 注意力机制 上下文感知融合块
下载PDF
融合上下文感知和背景探索的伪装目标检测方法
12
作者 陈世洁 范李平 +1 位作者 余肖生 王东娟 《国外电子测量技术》 2024年第8期17-25,共9页
伪装目标检测(camouflaged object detection, COD)旨在检测出与周围环境高度相似的伪装目标。针对目前COD方法中检测结果不完整、边缘细节模糊的问题,提出了一种融合上下文感知和背景探索(CABENet)的伪装目标检测模型。首先,该模型利用... 伪装目标检测(camouflaged object detection, COD)旨在检测出与周围环境高度相似的伪装目标。针对目前COD方法中检测结果不完整、边缘细节模糊的问题,提出了一种融合上下文感知和背景探索(CABENet)的伪装目标检测模型。首先,该模型利用Swin-Transformer模型作为骨干网络,在多个尺度上提取全局上下文信息;其次,利用提出的注意力联级上下文感知模块扩大感受野,并从通道和空间两个维度增强网络的特征提取能力,再通过全连接解码器捕获隐藏对象的粗略位置图;最后,通过融合注意力机制的背景探索模块从背景信息中挖掘目标的边缘线索,加强伪装目标边缘特征的提取。在CHAMELEON、CAMO以及COD10K数据集上的实验结果表明,该方法在4个评估指标上的性能优于其他10个具有代表性的模型,在COD10K数据集上,平均绝对误差降至了0.026。 展开更多
关键词 伪装目标检测 上下文感知 注意力机制 背景探索
下载PDF
用于多器官分割的多尺度聚合网络研究
13
作者 高学敏 杜晓刚 +2 位作者 张学军 王营博 雷涛 《陕西科技大学学报》 北大核心 2024年第2期189-197,共9页
多器官分割在病理分析、手术方案制定以及临床诊断上都具有重要的应用价值.但是,一些器官形变较大、尺寸较小且组织边缘模糊,导致分割效果较差.为了解决该问题,提出了一种用于多器官分割的多尺度聚合网络(MSANet).MSANet有两个优势:首先... 多器官分割在病理分析、手术方案制定以及临床诊断上都具有重要的应用价值.但是,一些器官形变较大、尺寸较小且组织边缘模糊,导致分割效果较差.为了解决该问题,提出了一种用于多器官分割的多尺度聚合网络(MSANet).MSANet有两个优势:首先,设计了多尺度边界提取模块,使用多尺度卷积核提取多个特征图,将不同尺度的特征图互相结合,从而聚合全局上下文信息,并提取不同器官的边界和细节信息;其次,设计了聚焦式注意力模块,通过学习的注意力权重来调节特征图的重要性,从而聚焦感兴趣的多器官区域并捕捉不同器官的关键特征,进一步提高分割性能.在两个公开数据集CHAOS和MS-CMRSeg上进行了大量实验.实验结果表明:MSANet在两个数据集上的分割效果均优于当前主流的多器官分割方法,显著提高了多器官分割精度. 展开更多
关键词 多器官分割 多尺度聚合网络 上下文信息 注意力机制
下载PDF
基于改进YOLOv7-tiny的高效轻量遥感图像目标检测方法
14
作者 邝先验 程福军 +1 位作者 吴翠琴 雷卉 《电子测量与仪器学报》 CSCD 北大核心 2024年第7期22-33,共12页
针对现有遥感图像目标检测方法在受资源限制的小型设备中检测精度不足问题,提出了一种基于改进YOLOv7-tiny算法的高效轻量遥感图像目标检测方法。首先,针对遥感图像小目标分布密集问题,设计了一种低跨度的上下文解耦检测头模块,通过融... 针对现有遥感图像目标检测方法在受资源限制的小型设备中检测精度不足问题,提出了一种基于改进YOLOv7-tiny算法的高效轻量遥感图像目标检测方法。首先,针对遥感图像小目标分布密集问题,设计了一种低跨度的上下文解耦检测头模块,通过融合深层和浅层特征分别实现目标检测的分类和回归任务,有效解决了遥感图像小目标漏检和误检的问题。同时,针对遥感图像目标多尺度问题,设计了一种并行级联注意力机制,通过并行三分支网络与空间注意力模块相结合,增强了网络对多尺度目标特征的提取能力。此外,引入Focal-EIoU损失函数,提高模型泛化能力。对模型进行了对比实验、消融实验、部署实验和泛化实验,结果表明,在DIOR-5s和NWPU VHR-10数据集上的检测精度分别达到了85.4%、90.6%,相较原模型分别提高了2.6%、1.7%。且模型大小仅为19.1 MB,检测速度为64.1 fps,验证了算法的有效性。 展开更多
关键词 遥感图像 目标检测 YOLO 低跨度上下文解耦 并行级联注意力
下载PDF
基于结构感知和全局上下文信息的小目标检测 被引量:1
15
作者 李钟华 林初俊 +2 位作者 朱恒亮 廖诗宇 白云起 《计算机工程与应用》 CSCD 北大核心 2024年第9期292-298,共7页
在小目标检测任务中,由于小目标像素值少、特征不丰富和难提取等局限性,容易导致模型漏检、误检以及精度低等问题,提出了一种基于多尺度结构感知和全局上下文信息的小目标检测算法。针对复杂场景设计了多尺度结构感知模块,可以更好地捕... 在小目标检测任务中,由于小目标像素值少、特征不丰富和难提取等局限性,容易导致模型漏检、误检以及精度低等问题,提出了一种基于多尺度结构感知和全局上下文信息的小目标检测算法。针对复杂场景设计了多尺度结构感知模块,可以更好地捕获小目标的细节特征,以此增强模型识别不同尺寸物体的检测能力。为了获取更多的全局特征,借助Transformer捕获长距离依赖特征的优势设计了全局上下文信息模块,有效地建立起不同区域像素点之间的联系。针对模型训练时的梯度爆炸现象,设计了一种新的带权重损失函数W-CIoU,使得训练时的收敛速度有明显改善。大量的实验结果表明,提出的方法相较于其他经典的轻量级方法取得了较好的检测效果。与基准模型相比,提出的模型在VisDrone数据集上mAP50和mAP50:95分别提高了6.4和4.6个百分点,同时在TinyPerson数据集上也有着不错的表现。 展开更多
关键词 小目标检测 注意力机制 上下文信息 损失函数
下载PDF
CCSD:面向话题的讽刺识别方法
16
作者 刘其龙 李弼程 黄志勇 《计算机科学》 CSCD 北大核心 2024年第9期310-318,共9页
随着社交媒体的发展,越来越多的人在社交平台上发表对热点话题的看法,其中讽刺手法的运用严重影响了社交媒体中情感分析的精度。目前面向话题的讽刺识别研究未同时考虑上下文和常识知识的作用,也忽略了在同一个话题下进行讽刺识别的场... 随着社交媒体的发展,越来越多的人在社交平台上发表对热点话题的看法,其中讽刺手法的运用严重影响了社交媒体中情感分析的精度。目前面向话题的讽刺识别研究未同时考虑上下文和常识知识的作用,也忽略了在同一个话题下进行讽刺识别的场景。为此,提出了基于上下文和常识的讽刺识别模型(Sarcasm Detection with Context and Common Sense,CCSD)。首先,模型使用C 3 KG常识库生成常识文本,并将目标句、话题上下文和常识文本作为预训练BERT模型的输入。其次,使用注意力机制来关注目标句和常识中重要的信息。最后,通过门控机制和特征融合,实现讽刺识别。文中构建了一个面向话题的讽刺识别数据集,以验证模型在特定话题中的有效性。实验结果表明,相比基线模型,新模型的性能更优。 展开更多
关键词 讽刺识别 面向话题的讽刺识别 上下文 常识知识 注意力机制
下载PDF
一种融合上下文信息及自适应感受野的多尺度目标检测算法
17
作者 张婷 兰时勇 《计算机应用与软件》 北大核心 2024年第10期314-318,共5页
目标检测在实际应用各类复杂场景中面临着诸多的挑战,如目标遮挡、光照变化、目标尺度变化等。为了提高多尺度目标检测的性能,提出一种改进的特征金字塔(FPN)的目标检测算法。以特征金字塔网络框架为基础引入上下文信息融合模块,充分利... 目标检测在实际应用各类复杂场景中面临着诸多的挑战,如目标遮挡、光照变化、目标尺度变化等。为了提高多尺度目标检测的性能,提出一种改进的特征金字塔(FPN)的目标检测算法。以特征金字塔网络框架为基础引入上下文信息融合模块,充分利用目标对象与其周围环境的关联属性,增强宽动态尺度范围的目标对象的特征表征,提高不同尺度目标的辨识能力。此外,构建一个跨通道注意机制,自适应调整不同尺度目标特征的通道灵敏度,学习到适应目标尺度的感受野范围。该算法在Pascal VOC数据集训练验证,其平均精确率(mAP)比基准方法提高了3%。 展开更多
关键词 目标检测 上下文信息融合 跨通道注意力机制
下载PDF
特征对齐与上下文引导的多视图三维重建
18
作者 熊超 王云艳 罗雨浩 《图学学报》 CSCD 北大核心 2024年第5期1008-1016,共9页
针对三维重建对细小特征及边缘区域重建欠佳的问题,提出了一个基于特征对齐与上下文引导的多视图三维重建网络,即AGA-MVSNet。首先,构建了一个特征对齐模块(FA)与特征选择模块(FS),能够将特征金字塔不同层级的特征先对齐之后再进行融合... 针对三维重建对细小特征及边缘区域重建欠佳的问题,提出了一个基于特征对齐与上下文引导的多视图三维重建网络,即AGA-MVSNet。首先,构建了一个特征对齐模块(FA)与特征选择模块(FS),能够将特征金字塔不同层级的特征先对齐之后再进行融合,提高对小尺寸物体和边缘区域的特征提取能力;然后,在代价体正则化中加入了一个上下文引导模块,该模块能够在略微增加运行内存的情况下充分利用周围信息,增强成本体积之间的相关性,提高三维重建的精度与完整度;最后,在DTU数据集上进行了实验,实验结果表明,该方法相比于基准网络CasMVSNet精度提升了2.2%,整体重建质量提升了2.5%。此外,在Tanks and Temples数据集上的表现相较一些已知的方法也十分优异,且在BlendedMVS数据集上也生成了不错的点云效果。 展开更多
关键词 深度学习 多视图三维重建 特征对齐 上下文引导 3D注意力机制
下载PDF
基于语境增强的新能源汽车投诉文本方面-观点对抽取
19
作者 汪才钦 周渝皓 +2 位作者 张顺香 王琰慧 王小龙 《计算机应用》 CSCD 北大核心 2024年第8期2430-2436,共7页
挖掘新能源汽车投诉文本中用户对产品多维度的意见,能为产品的设计决策提供参考。因投诉文本具有实体密度高、句式冗长等特点,导致当前方面-观点对抽取(AOPE)方法感知方面项与观点项间的关联性不强。针对这一问题,提出一种基于语境增强... 挖掘新能源汽车投诉文本中用户对产品多维度的意见,能为产品的设计决策提供参考。因投诉文本具有实体密度高、句式冗长等特点,导致当前方面-观点对抽取(AOPE)方法感知方面项与观点项间的关联性不强。针对这一问题,提出一种基于语境增强的AOPE模型(AOE-CE),通过融合主题特征与文本特征作为语境表示增强实体间的关联关系。模型由实体识别和关系检测2个模块组成:首先,实体识别通过预训练模型和词性标注工具编码文本,再利用双向长短期记忆(Bi-LSTM)网络结合多头注意力捕获上下文信息得到文本特征,并将文本特征输入至条件随机场(CRF)得到实体集合;关系检测通过BERT(Bidirectional Encoder Representations from Transformers)获取主题特征,并将主题特征与文本特征融合获得增强的语境表示,再利用三仿射机制以语境表示为辅助增强实体间的关联关系,最后通过Sigmoid得到抽取结果。实验结果表明,AOE-CE的精准率、召回率和F1值比SDRN(Synchronous Doublechannel Recurrent Network)模型分别提升了2.19、1.08和1.60个百分点,表明所提模型具有更好的AOPE效果。 展开更多
关键词 方面-观点对抽取 新能源汽车 投诉文本 语境增强 三仿射机制 多头注意力
下载PDF
基于上下文方面记忆网络的方面级情感分析
20
作者 王亚新 王亮 王军 《计算机工程与设计》 北大核心 2024年第2期443-451,共9页
基于深度记忆网络在方面级情感分析中的优势及针对相关工作中忽略上下文词与方面之间位置信息的不足,提出一种基于上下文方面记忆网络的方面级情感分析方法。不同记忆网络层关注上下文记忆不同部分,获取丰富方面感知上下文信息。为充分... 基于深度记忆网络在方面级情感分析中的优势及针对相关工作中忽略上下文词与方面之间位置信息的不足,提出一种基于上下文方面记忆网络的方面级情感分析方法。不同记忆网络层关注上下文记忆不同部分,获取丰富方面感知上下文信息。为充分利用方面间信息,设计方面记忆网络更新模块,为所需方面生成邻近方面的语义和关系信息,在多计算层中的多头注意力机制输入采用两种策略计算上下文和方面词的相关性。在3个基准数据集上的实验结果表明,所提模型在性能评价指标的准确率和Macro-F1-score上与相关工作比较有一定提升。 展开更多
关键词 细粒度 方面级情感分析 深度记忆网络 双向长短期记忆网络 多注意力机制 上下文 方面记忆网络
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部