The United States Geological Survey (USGS) 1955 (revised in 1972) Ashton topographic map (Ashton map) with a 1:250,000 scale and a 200-foot (about 60-meter) contour interval covers almost all of Yellowstone National P...The United States Geological Survey (USGS) 1955 (revised in 1972) Ashton topographic map (Ashton map) with a 1:250,000 scale and a 200-foot (about 60-meter) contour interval covers almost all of Yellowstone National Park and some adjacent regions to the south and west. In spite of numerous publications discussing Yellowstone region geologic history the drainage system and erosional landform evidence on the Ashton map appears to have been ignored. Drainage divides identifiable on the Ashton map separate the north-oriented Yellowstone, Gallatin, Madison, and Jefferson River drainage basins (which are located to the north and east of the continental divide with their water flowing to the Missouri River and ultimately the Gulf of Mexico) from the south-oriented Snake River drainage basin (with its water eventually reaching the Pacific Ocean). The Ashton map shows water-eroded passes and through valleys which link diverging and converging valleys which drain in opposite directions from the continental divide. These diverging and converging valleys suggest large volumes of south-oriented water once flowed across the Yellowstone region continental divide and some other Ashton map drainage divides. The accepted geology and glacial history paradigm (accepted paradigm) cannot satisfactorily explain the Ashton map drainage system and erosional landform evidence, which may be why geomorphologists have never addressed the map evidence. A new and fundamentally different geology and glacial history paradigm requiring the Yellowstone region to be located on the rim of a continental ice sheet created and occupied deep “hole” (which was uplifted as immense meltwater floods flowed across it) explains Ashton map drainage system and erosional landform evidence, but raises questions about previously published Yellowstone region geologic histories.展开更多
A new and fundamentally different geology and glacial history paradigm (new paradigm) is used to interpret previously ignored and unexplained drainage system and erosional landform evidence shown on the 1893 United St...A new and fundamentally different geology and glacial history paradigm (new paradigm) is used to interpret previously ignored and unexplained drainage system and erosional landform evidence shown on the 1893 United States Geological Survey Cranberry, North Carolina 1:125,000 scale topographic map (which has a 100-foot or about a 30-meter contour interval). In most regions including the Cranberry map area, geomorphologists have never been able to use the accepted geology and glacial history paradigm (accepted paradigm) to explain most of the topographic map drainage system and erosional landform evidence. Probably for that reason, drainage system and erosional landform evidence shown on the 1893 Cranberry topographic map and its adjacent topographic maps has been ignored for 130 years. This study demonstrates how a new geology and glacial history paradigm (new paradigm) which was developed by using Great Plains and Rocky Mountain topographic map evidence explains the 1893 Cranberry map drainage system and erosional landform evidence (and similar evidence from a small area on the adjacent 1905 Morgantown map). The new paradigm sees the Cranberry map area as being located along the southeastern rim of a continental ice sheet created and occupied deep “hole” with regional erosion occurring and present-day drainage systems developing when the headward erosion of southeast-oriented valleys from the Atlantic Ocean and of northwest-oriented valleys from the developing deep “hole” into the gradually rising deep “hole” rim captured massive and prolonged south- and southwest-oriented meltwater floods. The new paradigm permits explanations for most drainage divides, named and unnamed gaps, barbed tributaries, through valleys extending across drainage divides, isolated erosional remnants, diverging and converging valleys, and unusual river and stream direction changes which the 1893 Cranberry topographic map shows.展开更多
文摘The United States Geological Survey (USGS) 1955 (revised in 1972) Ashton topographic map (Ashton map) with a 1:250,000 scale and a 200-foot (about 60-meter) contour interval covers almost all of Yellowstone National Park and some adjacent regions to the south and west. In spite of numerous publications discussing Yellowstone region geologic history the drainage system and erosional landform evidence on the Ashton map appears to have been ignored. Drainage divides identifiable on the Ashton map separate the north-oriented Yellowstone, Gallatin, Madison, and Jefferson River drainage basins (which are located to the north and east of the continental divide with their water flowing to the Missouri River and ultimately the Gulf of Mexico) from the south-oriented Snake River drainage basin (with its water eventually reaching the Pacific Ocean). The Ashton map shows water-eroded passes and through valleys which link diverging and converging valleys which drain in opposite directions from the continental divide. These diverging and converging valleys suggest large volumes of south-oriented water once flowed across the Yellowstone region continental divide and some other Ashton map drainage divides. The accepted geology and glacial history paradigm (accepted paradigm) cannot satisfactorily explain the Ashton map drainage system and erosional landform evidence, which may be why geomorphologists have never addressed the map evidence. A new and fundamentally different geology and glacial history paradigm requiring the Yellowstone region to be located on the rim of a continental ice sheet created and occupied deep “hole” (which was uplifted as immense meltwater floods flowed across it) explains Ashton map drainage system and erosional landform evidence, but raises questions about previously published Yellowstone region geologic histories.
文摘A new and fundamentally different geology and glacial history paradigm (new paradigm) is used to interpret previously ignored and unexplained drainage system and erosional landform evidence shown on the 1893 United States Geological Survey Cranberry, North Carolina 1:125,000 scale topographic map (which has a 100-foot or about a 30-meter contour interval). In most regions including the Cranberry map area, geomorphologists have never been able to use the accepted geology and glacial history paradigm (accepted paradigm) to explain most of the topographic map drainage system and erosional landform evidence. Probably for that reason, drainage system and erosional landform evidence shown on the 1893 Cranberry topographic map and its adjacent topographic maps has been ignored for 130 years. This study demonstrates how a new geology and glacial history paradigm (new paradigm) which was developed by using Great Plains and Rocky Mountain topographic map evidence explains the 1893 Cranberry map drainage system and erosional landform evidence (and similar evidence from a small area on the adjacent 1905 Morgantown map). The new paradigm sees the Cranberry map area as being located along the southeastern rim of a continental ice sheet created and occupied deep “hole” with regional erosion occurring and present-day drainage systems developing when the headward erosion of southeast-oriented valleys from the Atlantic Ocean and of northwest-oriented valleys from the developing deep “hole” into the gradually rising deep “hole” rim captured massive and prolonged south- and southwest-oriented meltwater floods. The new paradigm permits explanations for most drainage divides, named and unnamed gaps, barbed tributaries, through valleys extending across drainage divides, isolated erosional remnants, diverging and converging valleys, and unusual river and stream direction changes which the 1893 Cranberry topographic map shows.