For each real number x∈(0,1),let[a_(1)(x),a_(2)(x),…,a_n(x),…]denote its continued fraction expansion.We study the convergence exponent defined byτ(x)=inf{s≥0:∞∑n=1(a_(n)(x)a_(n+1)(x))^(-s)<∞},which reflect...For each real number x∈(0,1),let[a_(1)(x),a_(2)(x),…,a_n(x),…]denote its continued fraction expansion.We study the convergence exponent defined byτ(x)=inf{s≥0:∞∑n=1(a_(n)(x)a_(n+1)(x))^(-s)<∞},which reflects the growth rate of the product of two consecutive partial quotients.As a main result,the Hausdorff dimensions of the level sets ofτ(x)are determined.展开更多
This paper investigates the fractal dimension of the fractional integrals of a fractal function. It has been proved that there exists some linear connection between the order of Riemann-Liouvile fractional integrals a...This paper investigates the fractal dimension of the fractional integrals of a fractal function. It has been proved that there exists some linear connection between the order of Riemann-Liouvile fractional integrals and the Hausdorff dimension of a fractal function.展开更多
Given n≥2 and α≥1/2,we obtained an improved upbound of Hausdorff's dimension of the fractional Schrodinger operator;that is,supf∈H^(s)(R^(n)) dim_(H){x∈R^(n):limt→0 e^(it)(-△)^(α) f(x)≠f(x)}≤n+1-2(n+1)s/...Given n≥2 and α≥1/2,we obtained an improved upbound of Hausdorff's dimension of the fractional Schrodinger operator;that is,supf∈H^(s)(R^(n)) dim_(H){x∈R^(n):limt→0 e^(it)(-△)^(α) f(x)≠f(x)}≤n+1-2(n+1)s/n for n/2(n+1)<s≤n/2.展开更多
A famous theorem of Szemer'edi asserts that any subset of integers with posi- tive upper density contains arbitrarily arithmetic progressions. Let Fq be a finite field with q elements and Fq((X^-1)) be the power ...A famous theorem of Szemer'edi asserts that any subset of integers with posi- tive upper density contains arbitrarily arithmetic progressions. Let Fq be a finite field with q elements and Fq((X^-1)) be the power field of formal series with coefficients lying in Fq. In this paper, we concern with the analogous Szemeredi problem for continued fractions of Laurent series: we will show that the set of points x ∈ Fq((X-1)) of whose sequence of degrees of partial quotients is strictly increasing and contain arbitrarily long arithmetic progressions is of Hausdorff dimension 1/2.展开更多
Considering the Julia set J(Tλ) of the Yang-Lee zeros of the Potts model on the diamond hierarchical Lattice on the complex plane, the authors proved that HDJ(Tλ) 〉 1 and discussed the continuity of J(Tλ) in...Considering the Julia set J(Tλ) of the Yang-Lee zeros of the Potts model on the diamond hierarchical Lattice on the complex plane, the authors proved that HDJ(Tλ) 〉 1 and discussed the continuity of J(Tλ) in Hausdorff topology for λ∈R.展开更多
This paper discusses further the roughness of Riemann-Liouville fractional integral on an arbitrary fractal continuous functions that follows Rfs. [1]. A novel method is used to reach a similar result for an arbitrary...This paper discusses further the roughness of Riemann-Liouville fractional integral on an arbitrary fractal continuous functions that follows Rfs. [1]. A novel method is used to reach a similar result for an arbitrary fractal function , where is the Riemann-Liouville fractional integral. Furthermore, a general resultis arrived at for 1-dimensional fractal functions such as with unbounded variation and(or) infinite lengths, which can infer all previous studies such as [2] [3]. This paper’s estimation reveals that the fractional integral does not increase the fractal dimension of f(x), i.e. fractional integration does not increase at least the fractal roughness. And the result has partly answered the fractal calculus conjecture and completely answered this conjecture for all 1-dimensional fractal function (Xiao has not answered). It is significant with a comparison to the past researches that the box dimension connection between a fractal function and its Riemann-Liouville integral has been carried out only for Weierstrass type and Besicovitch type functions, and at most Hlder continuous. Here the proof technique for Riemann-Liouville fractional integral is possibly of methodology to other fractional integrals.展开更多
Let X (t)(t∈R^N) be a d-dimensional fractional Brownian motion. A contiunous function f:R^N→R^d is called a polar function of X(t)(t∈R^N) if P{ t∈R^N\{0},X(t)=t(t)}=0. In this paper, the characteristies of the cla...Let X (t)(t∈R^N) be a d-dimensional fractional Brownian motion. A contiunous function f:R^N→R^d is called a polar function of X(t)(t∈R^N) if P{ t∈R^N\{0},X(t)=t(t)}=0. In this paper, the characteristies of the class of polar functions are studied. Our theorem 1 improves the previous results of Graversen and Legall. Theorem2 solves a problem of Legall (1987) on Brownian motion.展开更多
Based on the combination of fractional calculus with fractal functions, a new type of functions is introduced; the definition, graph, property and dimension of this function are discussed.
Let B^H={B^H(t),t∈R^N+}be a real-valued(N,d)fractional Brownian sheet with Hurst index H=(H1,…,HN).The characteristics of the polar functions for B^H are discussed.The relationship between the class of contin...Let B^H={B^H(t),t∈R^N+}be a real-valued(N,d)fractional Brownian sheet with Hurst index H=(H1,…,HN).The characteristics of the polar functions for B^H are discussed.The relationship between the class of continuous functions satisfying Lipschitz condition and the class of polar-functions of B^H is obtained.The Hausdorff dimension about the fixed points and the inequality about the Kolmogorov’s entropy index for B^H are presented.Furthermore,it is proved that any two independent fractional Brownian sheets are nonintersecting in some conditions.A problem proposed by LeGall about the existence of no-polar continuous functions satisfying the Holder condition is also solved.展开更多
基金supported by the Scientific Research Fund of Hunan Provincial Education Department(21B0070)the Natural Science Foundation of Jiangsu Province(BK20231452)+1 种基金the Fundamental Research Funds for the Central Universities(30922010809)the National Natural Science Foundation of China(11801591,11971195,12071171,12171107,12201207,12371072)。
文摘For each real number x∈(0,1),let[a_(1)(x),a_(2)(x),…,a_n(x),…]denote its continued fraction expansion.We study the convergence exponent defined byτ(x)=inf{s≥0:∞∑n=1(a_(n)(x)a_(n+1)(x))^(-s)<∞},which reflects the growth rate of the product of two consecutive partial quotients.As a main result,the Hausdorff dimensions of the level sets ofτ(x)are determined.
文摘This paper investigates the fractal dimension of the fractional integrals of a fractal function. It has been proved that there exists some linear connection between the order of Riemann-Liouvile fractional integrals and the Hausdorff dimension of a fractal function.
基金Li Dan and Li Junfeng were supported by NSFC-DFG(11761131002)NSFC(12071052)Xiao Jie was supported by NSERC of Canada(202979463102000).
文摘Given n≥2 and α≥1/2,we obtained an improved upbound of Hausdorff's dimension of the fractional Schrodinger operator;that is,supf∈H^(s)(R^(n)) dim_(H){x∈R^(n):limt→0 e^(it)(-△)^(α) f(x)≠f(x)}≤n+1-2(n+1)s/n for n/2(n+1)<s≤n/2.
文摘A famous theorem of Szemer'edi asserts that any subset of integers with posi- tive upper density contains arbitrarily arithmetic progressions. Let Fq be a finite field with q elements and Fq((X^-1)) be the power field of formal series with coefficients lying in Fq. In this paper, we concern with the analogous Szemeredi problem for continued fractions of Laurent series: we will show that the set of points x ∈ Fq((X-1)) of whose sequence of degrees of partial quotients is strictly increasing and contain arbitrarily long arithmetic progressions is of Hausdorff dimension 1/2.
基金supported by National Natural Science Foundation of China (10625107)Program for New Century Excellent Talents in University (04-0490)
文摘Considering the Julia set J(Tλ) of the Yang-Lee zeros of the Potts model on the diamond hierarchical Lattice on the complex plane, the authors proved that HDJ(Tλ) 〉 1 and discussed the continuity of J(Tλ) in Hausdorff topology for λ∈R.
文摘This paper discusses further the roughness of Riemann-Liouville fractional integral on an arbitrary fractal continuous functions that follows Rfs. [1]. A novel method is used to reach a similar result for an arbitrary fractal function , where is the Riemann-Liouville fractional integral. Furthermore, a general resultis arrived at for 1-dimensional fractal functions such as with unbounded variation and(or) infinite lengths, which can infer all previous studies such as [2] [3]. This paper’s estimation reveals that the fractional integral does not increase the fractal dimension of f(x), i.e. fractional integration does not increase at least the fractal roughness. And the result has partly answered the fractal calculus conjecture and completely answered this conjecture for all 1-dimensional fractal function (Xiao has not answered). It is significant with a comparison to the past researches that the box dimension connection between a fractal function and its Riemann-Liouville integral has been carried out only for Weierstrass type and Besicovitch type functions, and at most Hlder continuous. Here the proof technique for Riemann-Liouville fractional integral is possibly of methodology to other fractional integrals.
文摘Let X (t)(t∈R^N) be a d-dimensional fractional Brownian motion. A contiunous function f:R^N→R^d is called a polar function of X(t)(t∈R^N) if P{ t∈R^N\{0},X(t)=t(t)}=0. In this paper, the characteristies of the class of polar functions are studied. Our theorem 1 improves the previous results of Graversen and Legall. Theorem2 solves a problem of Legall (1987) on Brownian motion.
基金National Natural Science Foundation of Zhejiang Province
文摘Based on the combination of fractional calculus with fractal functions, a new type of functions is introduced; the definition, graph, property and dimension of this function are discussed.
基金the Key Research Base for Humanities and Social Sciences of Zhejiang Provincial High Education Talents(Statistics of Zhejiang Gongshang University)the Natural ScienceFoundation of Shaanxi Province(2005A08,2006A14)
文摘Let B^H={B^H(t),t∈R^N+}be a real-valued(N,d)fractional Brownian sheet with Hurst index H=(H1,…,HN).The characteristics of the polar functions for B^H are discussed.The relationship between the class of continuous functions satisfying Lipschitz condition and the class of polar-functions of B^H is obtained.The Hausdorff dimension about the fixed points and the inequality about the Kolmogorov’s entropy index for B^H are presented.Furthermore,it is proved that any two independent fractional Brownian sheets are nonintersecting in some conditions.A problem proposed by LeGall about the existence of no-polar continuous functions satisfying the Holder condition is also solved.