A continuously variable displacement mechanism, which is composed of a hydraulic control valve with mechanical-positional feedback to camshaft, was designed for changing the displacement of traditional camshaft connec...A continuously variable displacement mechanism, which is composed of a hydraulic control valve with mechanical-positional feedback to camshaft, was designed for changing the displacement of traditional camshaft connecting-rod low speed high torque (LSHT) hydraulic motor continuously. The new type of continuously variable displacement mechanism is simple and easy to be made. The structure and principle of a continuously variable displacement mechanism was introduced. The mathematic model of the continuously variable displacement mechanism was set up and its static and dynamic characteristics were analyzed with the help of computer simulation. It can be seen that the cam ring on camshaft of the traditional LSHT hydraulic motor can stop at any position between minimum and maximum eccentricity, according to an input fluid pressure signal. And it can also stay anywhere stably through self-adjusting. Besides, it can work stabilized when load impact or oil leakage exists.展开更多
The two-rotational-degrees-of-freedom(2R) parallel mechanism(PM) with two continuous rotational axes(CRAs) has a simple kinematic model.It is therefore easy to implement trajectory planning,parameter calibration...The two-rotational-degrees-of-freedom(2R) parallel mechanism(PM) with two continuous rotational axes(CRAs) has a simple kinematic model.It is therefore easy to implement trajectory planning,parameter calibration,and motion control,which allows for a variety of application prospects.However,no systematic analysis on structural constraints of the 2R-PM with two CRAs has been performed,and there are only a few types of 2R-PM with two CRAs.Thus,a theory regarding the type synthesis of the 2R-PM with two CRAs is systematically established.First,combining the theories of reciprocal screw and space geometry,the spatial arrangement relationships of the constraint forces applied to the moving platform by the branches are explored,which give the 2R-PM two CRAs.The different distributions of the constraint forces in each branch are also studied.On the basis of the obtained structural constraints of branches,and considering the geometric relationships of constraint forces in each branch,the appropriate kinematic chains are constructed.Through the reasonable configuration of branch kinematic chains corresponding to every structural constraint,a series of new 2R-PMs with two CRAs are finally obtained.展开更多
The mechanism of grain fracturing in a zirconia metering nozzle used in the continuous casting process was studied. The phase composition, microstructure, and chemical composition of the residual samples were studied ...The mechanism of grain fracturing in a zirconia metering nozzle used in the continuous casting process was studied. The phase composition, microstructure, and chemical composition of the residual samples were studied using an X-ray fluorescence analyzer, scanning electron microscope, and electron probe. Results revealed that the composition, structure, and mineral phase of the original layer, transition layer, and affected layer of the metering nozzle differed because of stabilizer precipitation and steel slag permeation. The stabilizer MgO formed low-melting phases with steel slag and impure SiO2 on the boundaries(pores) of zirconia grains; consequently, grain fracturing occurred and accelerated damage to the metering nozzle was observed.展开更多
The pyroelectric medium is an important material in the application of smart materials and structures. It is necessary to systematically discuss ail kinds of variational principles which play a very significant role i...The pyroelectric medium is an important material in the application of smart materials and structures. It is necessary to systematically discuss ail kinds of variational principles which play a very significant role in the fundamental theory of mechanics and numerical analysis method. This paper firstly gives the quasi-static and the dynamic variational principles,then the principles for eigen problems. As a simple example, the principle was finally applied to derive the fundamental, equations for an anisotropic piezoelectric plate.展开更多
The paper describes an analysis of thermo-mechanical (TM) processes appearing during the Aspo Pillar Stability Experiment (APSE). This analysis is based on finite elements with elasticity, plasticity and dam- age ...The paper describes an analysis of thermo-mechanical (TM) processes appearing during the Aspo Pillar Stability Experiment (APSE). This analysis is based on finite elements with elasticity, plasticity and dam- age mechanics models of rock behaviour and some least squares calibration techniques. The main aim is to examine the capability of continuous mechanics models to predict brittle damage behaviour of gran- ite rocks. The performed simulations use an in-house finite element software GEM and self-developed experimental continuum damage MATLAB code. The main contributions are twofold. First, it is an inverse analysis, which is used for (1) verification of an initial stress measurement by back analysis of conver- gence measurement during construction of the access tunnel and (2) identification of heat transfer rock mass properties by an inverse method based on the known heat sources and temperature measurements. Second, three different hierarchically built models are used to estimate the pillar damage zones, i.e. elas- tic model with Drucker-Prager strength criterion, elasto-plastic model with the same yield limit and a combination of elasto-plasticity with continuum damage mechanics. The damage mechanics model is also used to simulate uniaxial and triaxial compressive strength tests on the ,Aspo granite.展开更多
The semi-solid antiburning AZ61-1.0%Y magnesium alloy slurry with fine circular solid phase was fabricated by a novel type continuous mechanical stirring in this work.The microstructure of the semisolid slurry was cha...The semi-solid antiburning AZ61-1.0%Y magnesium alloy slurry with fine circular solid phase was fabricated by a novel type continuous mechanical stirring in this work.The microstructure of the semisolid slurry was characterized by a metallography microscope.The results show that the fine circular solid phase distributes uniformly in the slurry when the stirring temperature ranges from 600 to 605℃.With the increase of the stirring velocity,the size of the solid phase becomes smaller and smaller.With the increase of the stirring time,the size of solid phase gets finer,but if the stirring time is longer than the critical time,it will be coarsened abnormally.The mechanical properties of semi-solid AZ61-1.0%Y alloy are superior to those of the normally casting magnesium alloy.展开更多
Many titanium alloy subcomponents are subjected to fatigue loading in aerospace engineering,resulting in fatigue failure.The fatigue behavior of Ti_(2)AlNb alloy subcomponents was investigated based on the Seeger fati...Many titanium alloy subcomponents are subjected to fatigue loading in aerospace engineering,resulting in fatigue failure.The fatigue behavior of Ti_(2)AlNb alloy subcomponents was investigated based on the Seeger fatigue life theory and the improved Lemaitre damage evolution theory.Firstly,the finite element models of the standard openhole specimen and Y-section subcomponents have been established by ABAQUS.The damage model parameters were determined by fatigue tests,and the reliability of fatigue life simulation results of the Ti_(2)AlNb alloy standard open-hole specimen was verified.Meanwhile,the fatigue life of Ti_(2)AlNb alloy Y-section subcomponents was predicted.Under the same initial conditions,the average error of fatigue life predicted by two different models was 20.6%.Finally,the effects of loading amplitude,temperature,and Y-interface angle on fatigue properties of Ti_(2)AlNb Y-section subcomponents were investigated.These results provide a new idea for evaluating the fatigue life of various Ti_(2)AlNb alloy subcomponents.展开更多
文摘A continuously variable displacement mechanism, which is composed of a hydraulic control valve with mechanical-positional feedback to camshaft, was designed for changing the displacement of traditional camshaft connecting-rod low speed high torque (LSHT) hydraulic motor continuously. The new type of continuously variable displacement mechanism is simple and easy to be made. The structure and principle of a continuously variable displacement mechanism was introduced. The mathematic model of the continuously variable displacement mechanism was set up and its static and dynamic characteristics were analyzed with the help of computer simulation. It can be seen that the cam ring on camshaft of the traditional LSHT hydraulic motor can stop at any position between minimum and maximum eccentricity, according to an input fluid pressure signal. And it can also stay anywhere stably through self-adjusting. Besides, it can work stabilized when load impact or oil leakage exists.
基金Supported by National Natural Science Foundation of China(Grant No.51405425)Hebei Provincial Natural Science Foundation of China(Grant No.E2014203255)Independent Research Program Topics of Young Teachers in Yanshan University,China(Grant No.13LGA001)
文摘The two-rotational-degrees-of-freedom(2R) parallel mechanism(PM) with two continuous rotational axes(CRAs) has a simple kinematic model.It is therefore easy to implement trajectory planning,parameter calibration,and motion control,which allows for a variety of application prospects.However,no systematic analysis on structural constraints of the 2R-PM with two CRAs has been performed,and there are only a few types of 2R-PM with two CRAs.Thus,a theory regarding the type synthesis of the 2R-PM with two CRAs is systematically established.First,combining the theories of reciprocal screw and space geometry,the spatial arrangement relationships of the constraint forces applied to the moving platform by the branches are explored,which give the 2R-PM two CRAs.The different distributions of the constraint forces in each branch are also studied.On the basis of the obtained structural constraints of branches,and considering the geometric relationships of constraint forces in each branch,the appropriate kinematic chains are constructed.Through the reasonable configuration of branch kinematic chains corresponding to every structural constraint,a series of new 2R-PMs with two CRAs are finally obtained.
基金funded by the National Natural Science Foundation of China(51372193)the Natural Science Basic Research Plan in the Shaanxi Province of China(2014JM6224)
文摘The mechanism of grain fracturing in a zirconia metering nozzle used in the continuous casting process was studied. The phase composition, microstructure, and chemical composition of the residual samples were studied using an X-ray fluorescence analyzer, scanning electron microscope, and electron probe. Results revealed that the composition, structure, and mineral phase of the original layer, transition layer, and affected layer of the metering nozzle differed because of stabilizer precipitation and steel slag permeation. The stabilizer MgO formed low-melting phases with steel slag and impure SiO2 on the boundaries(pores) of zirconia grains; consequently, grain fracturing occurred and accelerated damage to the metering nozzle was observed.
基金The work is supported by the Doctoral Education Foundation.
文摘The pyroelectric medium is an important material in the application of smart materials and structures. It is necessary to systematically discuss ail kinds of variational principles which play a very significant role in the fundamental theory of mechanics and numerical analysis method. This paper firstly gives the quasi-static and the dynamic variational principles,then the principles for eigen problems. As a simple example, the principle was finally applied to derive the fundamental, equations for an anisotropic piezoelectric plate.
基金the context of the international DECOVALEX Project (DEmonstration of COupled models and their VALidation against EXperiments)financed by Radioactive Waste Repository Authority (RAWRA),through Technical University of Liberec (TUL), Czech RepublicSKB through its sp Pillar Stability Experiment project
文摘The paper describes an analysis of thermo-mechanical (TM) processes appearing during the Aspo Pillar Stability Experiment (APSE). This analysis is based on finite elements with elasticity, plasticity and dam- age mechanics models of rock behaviour and some least squares calibration techniques. The main aim is to examine the capability of continuous mechanics models to predict brittle damage behaviour of gran- ite rocks. The performed simulations use an in-house finite element software GEM and self-developed experimental continuum damage MATLAB code. The main contributions are twofold. First, it is an inverse analysis, which is used for (1) verification of an initial stress measurement by back analysis of conver- gence measurement during construction of the access tunnel and (2) identification of heat transfer rock mass properties by an inverse method based on the known heat sources and temperature measurements. Second, three different hierarchically built models are used to estimate the pillar damage zones, i.e. elas- tic model with Drucker-Prager strength criterion, elasto-plastic model with the same yield limit and a combination of elasto-plasticity with continuum damage mechanics. The damage mechanics model is also used to simulate uniaxial and triaxial compressive strength tests on the ,Aspo granite.
基金Project(50765005)supported by the National Natural Science Foundation of China
文摘The semi-solid antiburning AZ61-1.0%Y magnesium alloy slurry with fine circular solid phase was fabricated by a novel type continuous mechanical stirring in this work.The microstructure of the semisolid slurry was characterized by a metallography microscope.The results show that the fine circular solid phase distributes uniformly in the slurry when the stirring temperature ranges from 600 to 605℃.With the increase of the stirring velocity,the size of the solid phase becomes smaller and smaller.With the increase of the stirring time,the size of solid phase gets finer,but if the stirring time is longer than the critical time,it will be coarsened abnormally.The mechanical properties of semi-solid AZ61-1.0%Y alloy are superior to those of the normally casting magnesium alloy.
基金the financial support provided by the National Science and TechnologyMajor Project(No.J2019-VI-0003-0116)the Six Talent Peaks Project in Jiangsu Province(Grant No.2019-KTHY-059).
文摘Many titanium alloy subcomponents are subjected to fatigue loading in aerospace engineering,resulting in fatigue failure.The fatigue behavior of Ti_(2)AlNb alloy subcomponents was investigated based on the Seeger fatigue life theory and the improved Lemaitre damage evolution theory.Firstly,the finite element models of the standard openhole specimen and Y-section subcomponents have been established by ABAQUS.The damage model parameters were determined by fatigue tests,and the reliability of fatigue life simulation results of the Ti_(2)AlNb alloy standard open-hole specimen was verified.Meanwhile,the fatigue life of Ti_(2)AlNb alloy Y-section subcomponents was predicted.Under the same initial conditions,the average error of fatigue life predicted by two different models was 20.6%.Finally,the effects of loading amplitude,temperature,and Y-interface angle on fatigue properties of Ti_(2)AlNb Y-section subcomponents were investigated.These results provide a new idea for evaluating the fatigue life of various Ti_(2)AlNb alloy subcomponents.