Let (Ω, A, P) be a probability space, X(t, ω) a random function continuous in probability for t∈[0,+∞) or (-∞,+∞)(ω∈Ω), and F(t) a positive function continuous for t∈[0,+∞) or (-∞, +∞). If X(t, ω) and F(...Let (Ω, A, P) be a probability space, X(t, ω) a random function continuous in probability for t∈[0,+∞) or (-∞,+∞)(ω∈Ω), and F(t) a positive function continuous for t∈[0,+∞) or (-∞, +∞). If X(t, ω) and F(t) verify certain conditions, then there exists a sequence {Qn(t,ω)} of random polynomials such that we have almost surely: for t∈[0,+∞) or (-∞, +∞), lim|X(t, ω)-Qn(t, ω)|/F(t)=0.展开更多
文摘Let (Ω, A, P) be a probability space, X(t, ω) a random function continuous in probability for t∈[0,+∞) or (-∞,+∞)(ω∈Ω), and F(t) a positive function continuous for t∈[0,+∞) or (-∞, +∞). If X(t, ω) and F(t) verify certain conditions, then there exists a sequence {Qn(t,ω)} of random polynomials such that we have almost surely: for t∈[0,+∞) or (-∞, +∞), lim|X(t, ω)-Qn(t, ω)|/F(t)=0.